
Crane Lowers Rocq Safely into C++
(Extended Abstract)

Matthew Z. Weaver

mweaver89@bloomberg.net
Bloomberg

New York, NY, USA

Joomy Korkut

jkorkut@bloomberg.net
Bloomberg

New York, NY, USA

Abstract
We report on our ongoing effort to extract verified programs from

the Rocq Prover into production-grade C++. While existing com-

pilers and extractors from Rocq target high-level functional lan-

guages (OCaml, Haskell) or lower-level imperative ones (C, Rust),

none were well-suited for Bloomberg’s requirements. We introduce

Crane, a new extraction method to generate idiomatic, functional,

memory- and thread-safe C++ code aligned with Bloomberg’s cod-

ing practices. Our approach uses modern C++ features to represent

Rocq’s functional constructs in a way that preserves readability

and maintainability. Our tool can work with mappings of Rocq data

types to C++ standard library types, or to Bloomberg’s core library

types to facilitate integration with existing C++ code. Additionally,

we provide concurrency primitives in Rocq which compile into

software transactional memory (STM) constructs in C++, enabling

safe concurrent execution. This extended abstract sketches out the

design, implementation challenges, and early lessons learned in

our quest to integrate verified functional programs into complex

concurrent C++ systems.

1 Introduction
Testing remains a fundamental practice for building confidence in

software, but it can only establish correctness over a finite set of

inputs. It cannot rule out bugs across all possible executions. To

obtain stronger guarantees, we turn to formal verification, and in

particular to certified programming techniques that allow us to de-

velop programs alongside mathematical proofs of their correctness.

However, there is a significant gap between the languages used

to write certified programs and those relied upon in production

systems. Bridging this gap is crucial for bringing the benefits of

formal verification into real-world software systems.

In the Infrastructure & Security Research group in Bloomberg’s

Office of the CTO, the Rocq Prover [20] (formerly known as Coq) is

our principal tool for writing certified programs. Across Bloomberg,

however, C++ remains the primary programming language and the

lingua franca of our engineering teams. Many of our production

systems, libraries, and tooling are written in C++, whose design

patterns, idioms, and performance characteristics are familiar to

our engineers. To that end, Bloomberg has engineered its BDE

Development Environment (BDE) [3], a custom C++ development

environment with comprehensive in-house coding standards [4, 12].

These conventions have shaped how Bloomberg engineers write,

read, and reason about code over the past two and a half decades.

Introducing verified components into this landscape requires

credibility as much as correctness. For extracted code to be adopted

and maintained, it must be idiomatic, readable, and consistent with

our established C++ practices. Engineers must be able to inspect

and reason about the output without needing to learn unfamiliar

languages or design patterns. To bridge this gap, we aim to meet

our engineers where they are by lowering verified Rocq code into

a familiar, battle-tested environment, where safety, performance,

and readability can coexist. To this end, we introduce Crane
1
, our

new extraction method from Rocq to C++, for generating idiomatic,

functional, memory- and thread-safe C++ code that adheres to

Bloomberg’s development standards.

Crane has a twofold role in our certified programming strategy

at Bloomberg:

1. Crane enables Bloomberg engineers to implement high-assurance

components in Rocq, which can be extracted into performant, id-

iomatic, and maintainable C++ via Crane, making the resulting

code suitable for direct integration into production.

2. Crane allows a small team of formal verification engineers with

deep expertise in formal methods to provide verified, opt-in

libraries that application developers can adopt incrementally,

without needing such expertise themselves.

Looking beyond these immediate applications, we see Crane as a

step toward treating C++ as a portable high-level compilation target

for functional languages. Modern C++ offers a functional subset

rich enough to express higher-order code while still supporting low-

level, hand-tuned optimizations, making it an attractive “portable

assembly language” for compilers from higher-level languages.

2 Our philosophy
At Bloomberg, the scale and complexity of our production sys-

tems demand techniques that balance formal rigor with real-world

constraints. With Crane, we take a pragmatic, lightweight ap-

proach: rather than prioritizing a fully verified extractor, we focus

on generating code that integrates seamlessly into Bloomberg’s

infrastructure while remaining readable, idiomatic, and performant.

Verifying a compiler or extractor is a herculean undertaking, as

evidenced by projects such as CompCert, whose verified C compiler

required many person-years of formalization and proof effort [13].

Achieving that level of assurance demands simplifying the code

generation algorithm and minimizing language features to keep the

verification tractable, which would force us into tradeoffs that make

the resulting code generation impractical for industrial use. Our

immediate priority, instead, is to generate output that engineers

can read, reason about, and maintain effectively.

To further strengthen this foundation, we are developing tools

for random Rocq program generation and differential fuzzing, com-

paring Crane’s output against that of other extractors and com-

pilers. Together with static analysis tools for memory and thread

safety, these experiments will empirically validate Crane’s cor-

rectness and guide improvements to its extraction system. This

work, inspired by the state-of-the-art on random program gener-

ation [7, 9, 19], is ongoing, and we expect it to evolve alongside

Crane’s feature coverage.

1
Available at https://github.com/bloomberg/crane.

https://orcid.org/0000-0001-6959-8424
https://orcid.org/0000-0001-6784-7108
https://github.com/bloomberg/crane

RocqPL ’26, January 17, 2026, Rennes, France Weaver and Korkut

The emphasis on readability also ensures that the generated

code remains compatible with the lightweight verification methods

already common in Bloomberg’s development practices, such as

structured code review, property-based testing, fuzzing, and static

analysis for memory and thread safety. These practices, while not
formally verified, provide strong practical assurance when com-

bined with certified Rocq source code.

Moreover, we have designed Crane as a general-purpose tool

for any Rocq programmer, independent of Bloomberg-specific in-

frastructure. Integrations such as BDE support are modular and

optional, allowing users to target the C++ standard library or other

stacks. This design keeps Crane flexible, portable, and broadly

applicable to any Rocq programmer’s needs.

3 Novel features
Macros for custom extraction of Rocq definitions. As a prac-

tical feature, Rocq’s built-in OCaml extractor allows users to specify

custom mappings for extracting any constant definition or induc-

tive type to corresponding terms defined in OCaml. Thesemappings

work by replacing each occurrence of the Rocq definition with the

string provided when defining the mapping; as OCaml is also a

functional language, this simple approach is sufficient.

The situation is not as straightforward in C++; to replicate this

feature, we introduce a small macro language that lets users specify

where each relevant argument or component appears in the gen-

erated string. Consider the following instruction, which describes

how to extract the Rocq option type to std::optional in C++:

Crane Extract Inductive option =>
"std::optional<%t0>"
["std::make_optional<%t0>(%a0)" "std::nullopt"]
"if (%scrut.has_value())

{%t0 %b0a0 = *%scrut; %br0 }
else { %br1 }"
From "optional" "memory".

In the above syntax, %t0 indicates where to place the first type

argument in the mapping of option, the Some constructor, and

within the pattern matching statement. In the mapping for Some,
the placeholder %a0 indicates where to insert the extracted form

of the constructor’s first argument. When extracting a pattern

match over an option type, we generate the if-statement shown

above, where %scrut is replaced with the scrutinee of the match

statement, %b0a0 is the first argument bound in the first branch,

and %b0 and %b1 correspond to the bodies of the first and second

branches respectively. Lastly, by indicating that these mappings are

“from” optional and memory, we signal Crane to import both C++

libraries at the top of any generated file that uses this mapping.

Extensible, user-defined monadic effects. To maximize both

Crane’s flexibility and the readability of the generated C++ code,

we allow users to specify their ownmonadic effects by providing the

monad’s interface and defining the C++ syntax for each operation.

This lets experienced developers build effect interfaces tailored to

specific C++ libraries, while general users can rely on standard

effects provided in Crane’s library.

Crane represents effectful programs using interaction trees [23]

by default, to allow composition of different effects and integration

with existing verification efforts. However, users can supply their

own monads by introducing a type (e.g., IO : Type → Type) and
its associated operations, such as print_line : string → IO unit.

On the Crane side, users specify how to interpret types like IO A
and terms like print_line s in C++, after which any Rocq term

of type IO A extracts to C++ code of the corresponding type.

Leveraging this infrastructure, we have written interfaces for

several monadic effects, including one for software transactional

memory [8, 21]. STM allows us to define data structures guarantee-

ing race- and deadlock-free reads and writes in concurrent settings.

While starvation is possible, we want to build an interface in which

a user can prove the absence of starvation in specific use cases.

4 Future work
Future work includes expanding Crane’s coverage of Rocq’s syn-

tax and features to currently unsupported constructs, developing

a differential random testing tool to generate Rocq programs to

detect discrepancies between code produced by Crane and other

extractors, and deploying verified BDE library components at scale

within Bloomberg’s C++ infrastructure.

5 Related work
Verified C++. Numerous projects target the formal verification

of C++ code. The CBMC project offers a bounded model checker

for C and C++ [5], and Monteiro et al. describe a workflow for

model checking C++ programs. In the Rocq literature, Malecha

et al. present the BRiCk program logic for reasoning about C++

code within Rocq and Iris.

Rocq extractors. Several extractors and compilers exist for Rocq,

targeting a range of functional and imperative languages—including

OCaml, Haskell, and Scheme [6, 14]; C [1, 18, 22]; WebAssem-

bly [16]; and more recently, Rust and Elm [2]. Some of these tools,

such as CertiCoq [1], aim for full formal verification of the com-

pilation pipeline. Others prioritize practical correctness through

empirical validation and robust engineering.

A noteworthy extractormost similar to our approach isMCQC [10,

11], a tool that converts Rocq’s JSON extraction output to amemory-

safe, functional subset of C++. MCQC possesses many desirable

qualities for our use case:

+++ It uses modern C++ features such as smart pointers, variants,

and lambdas, to write code in a functional style;

+++ It translates certain Rocq standard library types to C++ standard

library types instead of redefining them;

+++ It translates monadic control structures for I/O into sequential

(;) statements in C++.

However, MCQC also falls short of many of our requirements:

−−− It hard-codes mappings from Rocq standard library types to

C++ standard library types, without allowing for user-defined

mappings;

−−− It does not handle higher-order functions adequately;

−−− It does not attempt concurrency (let alone user-definedmappings

of arbitrary monadic effects);

−−− Its code generation style differs from BDE’s requirements and

best practices.

Our project builds directly on MCQC’s core ideas but extends them

to generate memory-safe C++ that aligns with Bloomberg’s libraries

and coding standards.

Crane Lowers Rocq Safely into C++ RocqPL ’26, January 17, 2026, Rennes, France

References
[1] Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou,

Randy Pollack, Olivier Savary Bélanger, Matthieu Sozeau, and Matthew

Weaver. 2017. CertiCoq: A Verified Compiler for Coq. the 3rd Inter-
national Workshop on Coq for Programming Languages (CoqPL) (2017).

https://web.archive.org/web/20221117172213/https://www.cs.princeton.edu/
~appel/papers/certicoq-coqpl.pdf

[2] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. 2022.

Extracting functional programs from Coq, in Coq. Journal of Functional Program-
ming 32 (2022), e11. doi:10.1017/S0956796822000077

[3] Bloomberg L.P. 2014. BDE. http://github.com/bloomberg/bde
[4] Bloomberg L.P. 2024. BDE C++ Coding Standards. https://web.archive.org/web/

20250220223754/https://bloomberg.github.io/bde/knowledge_base/coding_
standards.html

[5] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking

ANSI-C Programs. In Tools and Algorithms for the Construction and Analysis of
Systems, Kurt Jensen and Andreas Podelski (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 168–176.

[6] Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. 2024. Verified Extraction

from Coq to OCaml. Proc. ACM Program. Lang. 8, PLDI, Article 149 (June 2024),
24 pages. doi:10.1145/3656379

[7] Justine Frank, Benjamin Quiring, and Leonidas Lampropoulos. 2024. Generating

Well-Typed Terms That Are Not “Useless”. Proc. ACM Program. Lang. 8, POPL,
Article 77 (Jan. 2024), 22 pages. doi:10.1145/3632919

[8] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. 2005.

Composable memory transactions. In Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Chicago, IL, USA)

(PPoPP ’05). Association for Computing Machinery, New York, NY, USA, 48–60.

doi:10.1145/1065944.1065952
[9] Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and Ilya Sergey. 2022.

Random testing of a higher-order blockchain language (experience report). Proc.
ACM Program. Lang. 6, ICFP, Article 122 (Aug. 2022), 16 pages. doi:10.1145/
3547653

[10] Eleftherios Ioannidis, Frans Kaashoek, and Nickolai Zeldovich. 2019. Extracting

and optimizing formally verified code for systems programming. In NASA Formal
Methods: 11th International Symposium, NFM 2019, Houston, TX, USA, May 7–9,
2019, Proceedings 11. Springer, 228–236. doi:10.1007/978-3-030-20652-9_15

[11] Eleftherios Ioannis Ioannidis. 2019. Extracting and Optimizing low-level byte-
code from High-level verified Coq. Master’s thesis. Massachusetts Institute of

Technology.

[12] John Lakos. 1996. Large-Scale C++ Software Design. Addison-Wesley Professional,

Reading, Massachusetts.

[13] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM
52, 7 (July 2009), 107–115. doi:10.1145/1538788.1538814

[14] Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic and Theory
of Algorithms, Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe

(Eds.). Springer, Berlin, Heidelberg, 359–369. doi:10.1007/978-3-540-69407-6_39
[15] Gregory Malecha, Gordon Stewart, František Farka, Jasper Haag, and Yoichi

Hirai. 2022. Developing With Formal Methods at BedRock Systems, Inc. IEEE
Security & Privacy 20, 3 (2022), 33–42. doi:10.1109/MSEC.2022.3158196

[16] Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas Spitters. 2025.

CertiCoq-Wasm: A Verified WebAssembly Backend for CertiCoq. Proceedings of
the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs
(2025), 127–139. doi:10.1145/3703595.3705879

[17] Felipe R. Monteiro, Mikhail R. Gadelha, and Lucas C. Cordeiro. 2022. Model

checking C++ programs. Software Testing, Verification and Reliability 32, 1 (2022),

e1793. doi:10.1002/stvr.1793
[18] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, and Dan

Grossman. 2018. Œuf: Minimizing the Coq Extraction TCB. In Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and Proofs (Los
Angeles, CA, USA) (CPP 2018). Association for Computing Machinery, New York,

NY, USA, 172–185. doi:10.1145/3167089
[19] Michał H. Pałka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing

an optimising compiler by generating random lambda terms. In Proceedings of the
6th International Workshop on Automation of Software Test (Waikiki, Honolulu,

HI, USA) (AST ’11). Association for Computing Machinery, New York, NY, USA,

91–97. doi:10.1145/1982595.1982615
[20] The Rocq Team. 2025. The Rocq Prover. http://rocq-prover.org
[21] Nir Shavit and Dan Touitou. 1995. Software transactional memory. In Proceedings

of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing
(Ottowa, Ontario, Canada) (PODC ’95). Association for Computing Machinery,

New York, NY, USA, 204–213. doi:10.1145/224964.224987
[22] Akira Tanaka. 2021. Coq to C translation with partial evaluation. In Proceedings of

the 2021 ACM SIGPLANWorkshop on Partial Evaluation and ProgramManipulation
(Virtual, Denmark) (PEPM 2021). Association for Computing Machinery, New

York, NY, USA, 14–31. doi:10.1145/3441296.3441394
[23] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Ben-

jamin C. Pierce, and Steve Zdancewic. 2019. Interaction Trees: Representing

Recursive and Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL,
Article 51 (dec 2019), 32 pages. doi:10.1145/3371119

https://web.archive.org/web/20221117172213/https://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://web.archive.org/web/20221117172213/https://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://doi.org/10.1017/S0956796822000077
http://github.com/bloomberg/bde
https://web.archive.org/web/20250220223754/https://bloomberg.github.io/bde/knowledge_base/coding_standards.html
https://web.archive.org/web/20250220223754/https://bloomberg.github.io/bde/knowledge_base/coding_standards.html
https://web.archive.org/web/20250220223754/https://bloomberg.github.io/bde/knowledge_base/coding_standards.html
https://doi.org/10.1145/3656379
https://doi.org/10.1145/3632919
https://doi.org/10.1145/1065944.1065952
https://doi.org/10.1145/3547653
https://doi.org/10.1145/3547653
https://doi.org/10.1007/978-3-030-20652-9_15
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1109/MSEC.2022.3158196
https://doi.org/10.1145/3703595.3705879
https://doi.org/10.1002/stvr.1793
https://doi.org/10.1145/3167089
https://doi.org/10.1145/1982595.1982615
http://rocq-prover.org
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/3441296.3441394
https://doi.org/10.1145/3371119

	Abstract
	1 Introduction
	2 Our philosophy
	3 Novel features
	4 Future work
	5 Related work
	References

