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ABSTRACT 
Modern C++, inaugurated by C++11, introduces many useful features. With an eye 

toward their successful adoption into large, mature code bases, we have cataloged useful 

new language features, along with any concomitant pitfalls, into three subcategories: (1) 

safe features, which can safely be used liberally wherever applicable, (2) conditionally-safe 

features, which can be used safely only under certain specific conditions, and (3) “unsafe” 

features, whose appropriate and safe use in production code is comparatively rare. Pitfalls 

associated with each feature in the second and third categories are elucidated objectively 

without endorsing any particular solution. Specific design decisions are, instead, left for 

the reader to determine in the context of his or her own particular development 

environment. 

INTRODUCTION 
In the years since C++11 became widely accessible, it has become well known 

that it introduced several additional pitfalls, which experienced software developers 

have since learned to work around. Although useful coding standards, design rules, 

and best practices are readily available1, they vary widely in their scope, accuracy, 

and applicability. Moreover, the solutions, recommendations, and opinions 

rendered in books, online, and in individual companies’ style guides are often 

subjective, occasionally controversial, and invariably different (sometimes 

incompatibly so) from one to the next. 

In response to a clear and pressing need to better understand such important 

issues, this paper aims to provide carefully curated, thoroughly vetted facts and 

objectively verifiable observations elucidating just the specific nature of these new 

pitfalls – irrespective of any particular solution. We begin by identifying several new 

C++11 features that practical experience in large code bases has shown can safely 

be used liberally wherever applicable. We then consider some other new features 

that, while potentially valuable, nonetheless merit considerable discussion as to 

what constitutes their productive use. Finally, we address a couple of features 

whose practical use is limited to very specific and rare circumstances. In each case, 

the discussion of a feature along with any identified concerns is intended to focus 

and facilitate its use, rather than discourage it. 

SAFE FEATURES 
Several of the C++11 language features simply standardize existing practice or 

address previous language deficiencies, are not prone to misuse, and can therefore 

be (safely) applied liberally throughout the code base: 

 deleted and defaulted2 functions 

 alias templates 

 strongly-typed enumerations (enum class) 

 explicit conversion operators 

                                       
1 E.g., C++ Core Guidelines (see http://isocpp.github.io/CppCoreGuidelines). 
2 Note that an explicitly declared special member function – even when defaulted in class scope – 

will disable generation of other such functions in the same way as would a non-defaulted one. Also 

note that default preserves triviality only when applied within class scope. 

http://wg21.link/n2346
http://wg21.link/n2258
http://wg21.link/n2347
http://wg21.link/n2437
http://isocpp.github.io/CppCoreGuidelines
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 override 

 local and unnamed types as template parameters 

 compile-time assertions (static_assert) 

 decltype
3
 

 delegating and inheriting constructors 

 null pointer literal (nullptr) 

 Dynamic initialization and destruction with concurrency 

 extern template 

 raw and Unicode4 string literals 

 alignment control (alignof and alignas) 

 attributes5 

 inline namespaces 

 trailing function return types 

 generalized unions and PODs 

 long long 

 extended friend declarations 

 consecutive right angle brackets in templates 

These features, used appropriately, typically yield clearer, more concise code 

compared to what was achievable with older C++ standards. 

CONDITIONALLY SAFE FEATURES 
There are some new features in C++11 that, though often beneficial, can also 

lead to losses in performance, maintainability, and correctness. In this section we 

address pitfalls associated with several such C++11 constructs. 

TYPE DEDUCTION FROM INITIALIZER (auto) 

Use of the auto type placeholder obviates explicit specification of a variable's 

type, relying instead on the compiler to deduce the type from its initializer. As of 

C++17, however, it is not possible to place (compiler-enforceable) constraints on the 

auto portion of the deduced type, which (similarly to unconstrained templates) can 

lead to difficult-to-diagnose compile-time (and runtime) errors. Furthermore, lack of 

readily observable type information might impede human comprehension. 

There are, however, situations in which auto can be used without compromising 

maintainability6: 

 The variable is initialized via a factory function template such that the return 

type is derived from only explicitly provided type arguments: 
auto ptr = std::make_shared<MyType>();  // Deduces 'std::shared_ptr<MyType>'. 

 The deduced type is somehow clearly duplicated in the initializing expression: 
const auto& value = std::get<MyType>(myVariant);  // Deduces 'MyType'. 

 The variable’s type is impossible to spell explicitly (e.g., lambdas7): 

                                       
3 Note that decltype(x) and decltype((x)) do not necessarily represent the same type: The 

former interprets its argument as a variable; the latter, as an expression. 
4 Note that lack of distinct type for UTF-8-encoded character and string literals might lead to 

portability issues (see http://wg21.link/p0482r1). 
5 Note that the [[carries_dependency]] attribute  pertains to use of memory_order_consume, 

which is actively discouraged as of the C++17 standard (see [atomics.order]). 
6 auto can also be used productively in range-based for loops (see below). 

http://wg21.link/n3272
http://wg21.link/n2657
http://wg21.link/n1720
http://wg21.link/n3276
http://wg21.link/n1986
http://wg21.link/n2540
http://wg21.link/n2431
http://wg21.link/n2660
http://wg21.link/n1987
http://wg21.link/n2442
http://wg21.link/n2341
http://wg21.link/n2761
http://wg21.link/n2535
http://wg21.link/n2541
http://wg21.link/n2544
http://wg21.link/n2294
http://wg21.link/n1811
http://wg21.link/n1791
http://wg21.link/n1757
http://wg21.link/p0482r1
http://eel.is/c++draft/atomics.order#1.3
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auto filterFn = [&](const MyType& value) { /* Perform the check. */ }; 

 The (precise) type of the variable is complex and does not communicate useful 

information (e.g., expression templates, range adapters): 
auto sumExpr = matrix1 + matrix2; 

auto resultExpr = sumExpr * matrix3 - 2 * matrix4; 

  // Deduces 'Sub<Mul<Add<Matrix, Matrix>, Matrix>, Mul<Terminal, Matrix>>'. 
 

auto resultRange = rng | filtered(FiltFn()) | transformed(TransformFn()); 

  // Deduces 'TransformRng<FilterRng<decltype(rng), FiltFn>, TransformFn>'. 

auto can also be used to inform the reader that a function does not rely on the 

specific type of a variable, but instead on a concept8 – i.e., a named set of type 

constraints – that the variable's type is supposed to satisfy. Ideally, this concept 

would be (1) obvious from the initializing expression, and (2) a vocabulary concept 

(invariably known to the reader). Currently, the only set of concepts (possibly) 

satisfying both of these conditions for virtually all experienced C++ developers is the 

Iterator concept hierarchy: 
  auto it = container.begin(); 

    // Type 'decltype(it)' satisfies at least the 'InputIterator' concept. 

Lack of ability to specify a concept that the auto-deduced type satisfies, however, 

might lead to failure to express essential semantic information – e.g., when 

subsequent (perhaps even yet-to-be-written) code requires operations beyond what 

explicit use of an InputIterator concept would have required. 

Appropriate reference and cv-qualifier specifications for auto are, of course, 

nonetheless necessary to prevent unintended copies: 
  auto value = std::get<MyType>(myVariant); 

    // 'value' is a copy of the data already stored in 'myVariant'. 

    // Attempts to change 'myVariant' through 'value' will compile, but will not work. 

Even a fully cv-ref-qualified auto might still prove inadequate in cases as simple as 

introducing a variable for a returned-temporary value: 
  // refactoring useValue(getValue()): 

  auto&& tempValue = getValue(); 

  useValue(tempValue); 

    // WARNING - Might change semantics! Equivalent code must also use 'std::forward': 

    //   useValue(std::forward<decltype(tempValue)>(tempValue)); 

When converting to a particular type, compulsive use of auto might also lead to 

employing less-safe (e.g., lossy) explicit conversions, rather than potentially more-

safe (e.g., non-lossy) implicit ones (perhaps deliberately provided as a consequence 

of thoughtful library design): 
  template <class Duration1, class Duration2> 

  std::chrono::seconds combine_durations(Duration1 d1, Duration2 d2) { 

    // auto d = std::chrono::seconds{d1 + d2}; 

    // BAD - Invokes explicit conversion: Would compile and run for two integers! 
 

    std::chrono::seconds d = d1 + d2; // BETTER - Would NOT compile for two integers. 

  } 

Similarly, explicit conversions encouraged by such unbridled use of auto might 

also lead to maintenance issues: 
 

  void func(Derived *pDerived) { // Refactored from std::shared_ptr<Derived> 

    auto pBase = std::shared_ptr<Base>{pDerived}; 

      // BAD – 'pBase' now assumes duplicate ownerships (resulting in UB). 
 

    std::shared_ptr<Base> pBase = pDerived; // OK – now fails to compile. 

  } 

                                                                                                                                  
7 Unlike using auto to deduce lambda types, employing polymorphic function wrappers, such as 

std::function, might incur runtime overhead due to potential memory allocation upon 

construction, as well as virtual dispatch on every call. 
8 Note that, as of C++17, concepts as a language feature were not yet a part of the C++ Standard. 
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Finally, using auto for deducing fundamental types (e.g., int, float) might hide 

important, context-sensitive considerations, such as overflow and mixing signed 

and unsigned integral types, which depend critically on the number and precise 

interpretation of the respective bits. 

LAMBDA EXPRESSIONS 

Lambda expressions provide a lightweight syntax for introducing unnamed 

function objects (closures), often enabling easier-to-understand, more maintainable 

code. Using lambdas instead of existing (or appropriately extracted) named 

functions or function objects can, however, lead to excessive code duplication: 
  std::sort(v.begin(), v.end(), [](int lhs, int rhs) { return lhs > rhs; }); 

    // Using 'std::greater<int>()' provides both better expressiveness and modularity. 

Lambdas that might outlive the scope in which they were introduced are 

susceptible to inadvertent dangling references or pointers – especially if reference 

capture-default ([&]) is used, or if the this pointer is captured (either implicitly or 

explicitly): 
  class MyHandler { EventType d_myEvent; /*...*/ } 

  void MyHandler::addTo(EventManager& em) { 

      em.addHandler([=](EventType event) { 

          if (d_myEvent == event) /* ... */  

      });  // ^~~~~~~~~ The 'this' pointer is captured implicitly, and becomes  

  }        //           dangling when this object (of class 'MyHandler') is destroyed. 

RANGE-BASED for LOOPS 

Range-based for loops provide a more abstract, concise, and error-resistant 

iteration construct compared to traditional ones (i.e., those exposing an iterator or 

index). These newer for loops are, however, susceptible to being pressed into 

service where a standard algorithm (perhaps employing a lambda) might have 

provided a simpler, more expressive, and more maintainable solution. 

Improper specification of the type of the for's element variable might lead to an 

unnecessary (potentially sliced) copy of each element in a container: 
  for (std::string s : vectorOfStrings)  

    // Makes a copy of each element in 'vectorOfStrings' - use 'const std::string&'. 
 

  struct Derived : Base { /* ... */ } 

  for (Base s : vectorOfDerived)  

    // Makes a sliced copy of each element in 'vectorOfDerived' - use 'const Base&'. 

Range-based for loops over associative containers, such as map and 

unordered_map, are especially prone to unintended copies, as the essential 

constness of the key in their respective value_types can be easy to overlook: 
  for (const std::pair<int, std::string>& keyVal : mapIntToString) 

    // BAD - Makes a copy of each key-value pair. 
 

  for (const std::pair<const int, std::string>& keyVal : mapIntToString)  

    // OK - No copy made (provided that corresponding types are maintained properly). 
 

  for (const std::map<int, std::string>::value_type& keyVal : mapIntToString)  

    // OK - No copy made (provided that corresponding types are maintained properly). 
 

  for (const auto& keyVal : mapIntToString) 

  for (auto&& keyVal : mapIntToString) 

    // OK – No copy made.  (The type of 'keyVal' is, however, elided completely.) 

Finally, range-based for loops might hide issues with iterator invalidation and 

reference lifetime extension, leading to undefined behavior9:  
  std::optional<std::vector<int>> get_vector(); 
 

  for (int value : get_vector().value()) { } 

    // BAD – The object returned by 'get_vector' is destroyed before first iteration. 

                                       
9 For a more detailed discussion of this issue, see, e.g., https://abseil.io/tips/107. 

https://abseil.io/tips/107


5 
 

initializer_list 

The initializer_list type enables the creation of functions that operate on 

sequences of different (compile-time) size without having to templatize them. 

Employing an initializer_list might incur runtime overhead, as its 

construction behaves as if the compiler generated and materialized a temporary 

array, wherein elements are copy-initialized from the original sequence of 

initializers: 
  std::vector<std::string> vec = {str1, str2, str3};  // Copies input strings twice. 

Furthermore, elements within an initializer_list cannot be moved from, 

making the initializer_list type unusable for move-only types. 

BRACED INITIALIZATION 

Braced initialization syntax facilitates initialization of containers with their 

contents, provides a convenient way to initialize simple classes having only public 

data members, prevents narrowing conversions, and avoids the “most vexing 

parse”. Braced initialization, however, also implies that the initializer_list 

constructor is preferred even when another constructor would otherwise be an 

equivalent or better match for the arguments, which can lead to silent behavioral 

changes for existing clients if an initializer_list constructor is retrofitted into 

library code: 
  struct IntVector { 

      IntVector(size_t count, int value); 

      // IntVector(std::initializer_list<int> values);  // Might affect clients. 

  }; 
 

  IntVector data{3, 1}; 

    // Uncommenting IntVector's initializer_list constructor 

    // silently changes the contents of 'data' from { 1, 1, 1 } to { 3, 1 }. 

Furthermore, this preference for initializer_list constructors might also 

lead to unexpected behavior resulting from implicit conversions: 
  std::string s{65, 'a'};  // Variable 's' has the value "Aa". 

Finally, use of braced syntax for containers often tends to suggest that 

sequential element initialization will be performed, yet such is not necessarily the 

case – even within the standard library! For example, std::vector<T>{3} will have 

one or three elements, depending (respectively) on whether or not T is implicitly 

constructible from 3: E.g., std::vector<int>{3} would contain only a single 

element (the integer 3), whereas std::vector<std::string>{3} would contain 

three empty strings. Hence, such purely conventional expectations for the meaning 

of braced initialization can be especially problematic in generic code. 

RVALUE REFERENCES, FORWARDING REFERENCES, AND MOVE SEMANTICS 

Rvalue references enable support for move-only types as well as the 

differentiation of temporary values, thereby enabling optimizations resulting from 

the avoidance of superfluous copies. Throwing move operations – i.e., those not 

explicitly marked noexcept (or so generated by the compiler) – might, however, 

impede such optimizations. For example, operations defined for std::vector 

providing the strong exception-safety guarantee (e.g., push_back) will be forced to 

fall back on copying and even on providing only the basic guarantee, if the 

elements are not copyable: 
  struct MyType { 

      std::unique_ptr<int> d_ptr;  

      MyCxx03TypeWithThrowingCopy d_value; 

  }; 

https://en.wikipedia.org/wiki/Most_vexing_parse
https://en.wikipedia.org/wiki/Most_vexing_parse
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  // 'MyType' is non-copyable (due to its 'd_ptr' member) and its (compiler-generated) 

  // move assignment is 'noexcept(false)' (due to the 'd_value' member); hence, 

  // 'vector<MyType>::push_back' is NOT able to ensure the strong guarantee! 

A named variable of rvalue-reference type (such as a move constructor's 

parameter) is itself an lvalue; hence, explicit casts (usually performed using 

std::move) are required to suppress unwanted copies – both when moving the 

object as a whole and when moving its sub-objects:  
  void func(std::vector<int>&& initData) { 

      // std::vector<int> data(initData);          // BAD - Uses copy construction. 

      std::vector<int> data(std::move(initData));  //  OK - Uses move construction. 

  } 
 

  struct MyMovableType { 

      std::string d_data; 

      /* ... */ 

      MyMovableType(MyMovableType&& other) noexcept : 

          // d_data(other.d_data)                  // BAD - Uses copy construction. 

          d_data(std::move(other.d_data))          //  OK - Uses move construction. 

      { /* ... */ } 

  }; 

Function templates that have forwarding-reference parameters – i.e., those of 

form TYPE&& (where TYPE is deduced) and can therefore operate on arguments 

passed by either lvalue or rvalue reference due to reference collapsing rules – 

require (instead of std::move) the use of std::forward to propagate the 

argument’s value category (i.e., to perform perfect forwarding): 
  void func(SpecificType&);      // overload (1) – accepts lvalue reference 

  void func(SpecificType&&);     // overload (2) – accepts rvalue reference 
 

  template<class TYPE> 

  void func_wrapper(TYPE&& init) { 

      // func(init);             // BAD - Always uses the lvalue-ref overload (1). 

      // func(std::move(init));  // BAD - Always uses the rvalue-ref overload (2). 
 

      func(std::forward<TYPE>(init)); 

        // OK - Uses overload (1) for lvalues and overload (2) for rvalues. 

  } 

Finally, the state of a moved-from object is typically unspecified; hence, calling a 

function, such as std::string::front, having a narrow contract (i.e., one with 

preconditions) on a moved-from object might lead to undefined behavior10. 

noexcept 

The noexcept specifier enables the explicit denotation of functions as being non-

throwing, thereby enabling qualitative (semantically significant) algorithmic 

optimizations – most notably those pertaining to preferring efficient moves over 

inefficient copies in mutating container operations, such as 

std::vector::push_back, that offer the strong exception-safety guarantee. 

Decorating a non-throwing function with noexcept might also improve local code 

generation for its clients by enabling compilers to elide stack-unwinding code in the 

calling context without needing visibility into the function’s implementation: 
  int calledFn() noexcept;  // The implementation of 'calledFn' is not visible,  

                            // but it is explicitly marked 'noexcept'. 

  int callingFn() { 

      return calledFn();    // No exceptions can be thrown by 'calledFn'; hence, no 

  }                         // code is generated in 'callingFn' to handle them. 

Such local code changes to functions that never throw are, however, only 

quantitative (i.e., do not affect program semantics), and their effect on performance 

                                       
10 The essential validity of moved-from objects is usually maintained including self-move assign-

ment – e.g., x = std::move(x); – see http://ericniebler.com/2017/03/31/post-conditions-on-self-

move/. Hence, invoking a function having a wide contract on a moved-from object is typically safe. 

http://ericniebler.com/2017/03/31/post-conditions-on-self-move/
http://ericniebler.com/2017/03/31/post-conditions-on-self-move/
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(if any) is typically negligible. Furthermore, noexcept might precipitate additional 

(exception-detection) code11 in the function to which it is applied: 
  int nonNoexceptFn(); 

  int calledFn() noexcept { 

      return nonNoexceptFn();  // The compiler must add code to call 'std::terminate' 

  }                            // (just in case 'nonNoexceptFn' actually throws). 

Applying noexcept to a function having preconditions (i.e., a narrow contract) 

precludes a contract-violation handler from throwing an exception in response to 

Defensive-Programing (DP) assertion failures – a behavior that might be useful (1) 

in production software, or (2) even just as pragmatic means for validating such 

defensive checks during unit testing. Note that a new, core-language-based 

Contracts Facility12 is anticipated for C++20. Also note that the C++ Standard itself 

has followed the policy13 of adding noexcept only to functions having no 

preconditions (i.e., a wide contract) ever since the introduction of this keyword. 

constexpr 

The constexpr mechanism simplifies expressing compile-time computations 

and widens their scope to include user-defined types. Limitations placed on 

constexpr functions (especially prior to C++14), however, often preclude 

implementation of an optimal algorithm, leading to performance penalties if 

executed at runtime. Such runtime execution will occur unless all arguments are 

constant expressions, and might happen anyway unless the value that the 

constexpr function returns is used in a context requiring a constant expression: 
  constexpr float power(float base, int exp) {  // example-only 'constexpr' function 

      return exp == 0 ? 1 : base * power(base, exp - 1); 

  } 
 

  void use_power(float base) { 

      constexpr float value = power(1.4f, 100); 

        // Guaranteed to be computed at compile time. 

      float value = power(1.4f, 100);  

        // Will likely be computed at compile time, but there is NO guarantee. 
 

      constexpr float value = power(base, 100);  

        // Will not compile - 'base' is not known at compile time. 

      float value = power(base, 100);  

        // Will be computed at runtime, but much less efficiently 

        // than it would have been by simply calling 'std::pow'. 

  } 

Separately, complex constexpr computations (e.g., sorting an array of pairs to 

represent a constexpr map) – especially if performed in a header file and, hence, in 

all translation units that include it – might increase compilation time significantly. 

VARIADIC TEMPLATES 

Variadic templates (previously approximated by a finite suite of non-variadic 

ones) enable function and type templates to accept an arbitrarily large number of 

template arguments. Excessive use of such templates, e.g. involving pseudo-

recursive implementations, might, however lead to substantially increased (and 

difficult-to-analyse) compile times, as well as defeat certain compiler 

optimizations14: 

 

                                       
11 Marking a function that makes a potentially throwing call noexcept might also preclude tail-

call optimization, in which a simple jump instruction is used to avoid allocating a new stack frame. 
12 See P0542R3: Support for contract-based programming in C++ (https://wg21.link/p0542r3). 
13 See N3279: Conservative use of noexcept in the Library (https://wg21.link/n3279). 
14 See Meeting C++ 2015 keynote by Chandler Carruth (video at ~36:00, slides #44). 

https://wg21.link/p0542r3
https://wg21.link/n3279
https://youtu.be/FnGCDLhaxKU?t=2182
https://meetingcpp.com/files/mcpp/2015/talks/meetingcxx_2015-understanding_compiler_optimization_themed_copy.pdf
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  template <typename T, typename ...Ts> 

  int hash(hash_state &h, T arg, Ts ...args) { 

      add_to_state(h, arg);    // some complex computation to put 'arg' into state 'h' 

      return hash(h, args...); // Pseudo-recursive instantiation and function call 

  }                            // that might be problematic for the optimizer. 

USER-DEFINED LITERALS 

User-defined literals enable integer, floating-point, character, and string literals 

to produce objects of user-defined type via the invocation of user-defined “suffix” 

operators. To be effective, however, the suffixes must be short, which, unlike 

function and class names, cannot be disambiguated with qualification in case of a 

name clash at the point of use – thus requiring copious (locally scoped) using 

directives instead. 

DEFAULT MEMBER INITIALIZERS 

Default member initializers can help to avoid duplicate initializations in multiple 

constructors, and allow non-default initialization of non-inherited members in 

inherited constructors. Any change to the initializer, however, necessarily requires 

recompilation of all clients, as opposed to only relinking if the initialization is 

performed in constructors defined entirely within a separate source file. 

 “FORWARD” DECLARATIONS OF ENUMERATIONS 

An opaque enumeration declaration enables the use of that enumeration without 

granting visibility to its enumerators. Unlike a forward class declaration, however, 

an opaque enumeration declaration produces a complete type, sufficient for 

substantive use (e.g., via the linker). Hence, a local opaque enum declaration (whose 

underlying type’s consistency with its complete definition cannot be enforced by the 

compiler) might lead to an ill-formed program (no diagnostic required): 
event_component.h: 
  enum class Event : int { /* slowly growing list of enumerators */ }; 

  int processEvent(Event e); 
 

evil_application.cpp: 
  // 'event_component.h' is not included to avoid recompilation when enumerators of  

  // the 'Event' enumeration are added. 
 

  enum class Event : int;  // BAD - Local enum declaration: Program silently becomes   

                           // ill-formed if underlying type of 'Event' in  

  // ...                   // 'event_component.h' is changed. 

If the underlying type of Event changes, but the local declaration is not updated 

accordingly, the (now ill-formed) program will still compile, link, and run, but its 

behavior silently becomes undefined. Note that this entirely new incarnation of the 

classic local-declaration pitfall is far more insidious than it might first appear15.  

                                       
15 The maintainability pitfall associated with opaque enumerators is qualitatively more severe than 

for other external-linkage types, such as a global int, in that the ability to elide the enumerators 

amounts to an attractive nuisance wherein a client – wanting to do so and having access to only a 

single header containing the unelided definition (i.e., comprising the enumerator name, underlying 

integral type, and enumerator list) – is seduced into providing an elided copy of the enum’s definition 

(i.e., one  omitting just the enumerators) locally. Having the library component provide a second 

(forwarding) header file containing just the opaque declaration of the enumeration (i.e. enumerator 

name and underlying integral type only), for example, would be one (generally applicable) way to 

sidestep this often surprisingly insidious maintenance burden: 
event_component_fwd.h: 

  // Clients using this header are not recompiled if just the enumerators change. 

  enum class Event : int;  // OK – Opaque enumeration declaration for all clients. 

  int processEvent(Event e); 

event_component.h: 
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“UNSAFE” FEATURES 
(Misnomer aside) there are at least a couple of features whose practical use is 

sufficiently specific (rare) that they tend to be disproportionately overused in 

practice: 

 The final specifier unilaterally restricts clients of a class by either preventing 

a derived class from overriding individual virtual functions, or (if used on a 

class) forbidding derivation altogether. Although there exist rare cases where 

final is indispensable16, its liberal use (especially in library software) might 

unnecessarily restrict clients and preclude legitimate uses without realizing 

any actual benefit (e.g., in terms of either improved maintainability or 

performance). 

 Ref-qualified member functions can occasionally be used (very effectively) to 

communicate distinctive class semantics, enable certain optimizations, or 

improve compile-time detection of client misuse. Such benefits, however, 

might be outweighed by additional costs associated with increased (1) 

inherent code complexity, (2) required developer training, and (3) frequency of 

incorrect use –especially in the context of a very large, mature development 

organization. 

CONCLUSION 
The modern features added by C++11 and subsequent standards add clarity and 

expressiveness to the language. Yet experience has shown that, while some features 

can be used safely in almost all relevant circumstances, other features have the 

potential for being misused so as to make software harder to understand, costlier to 

maintain, and more likely to harbor defects. When a language pitfall is identified, 

there are frequently multiple viable ways to address it, and choosing the best one 

requires a deep understanding of the problem in isolation, unencumbered by any 

one solution, as well as the specific development context in which the solution will 

be applied. Moreover, sometimes the particular solution choice might be entirely 

arbitrary, and writing code constantly within a given organization, if done well 

enough, might be significantly better (e.g., more cost effective) than doing it in two 

or more different ways, even if each of those ways, were they to have been used 

exclusively from the start, would have been better. By identifying and concisely 

elucidating just the specific nature of potential pitfalls – in a manner suitable for 

consumption by individual software developers, as well as those creating local 

design rules, coding standards, or recommended best practices – we hope to garner 

consensus as to “where there be dragons” and thereby help others to realize much 

of the potential productivity benefits afforded by Modern C++, while avoiding 

inartful usage that might have a long-term negative impact. 

                                                                                                                                  
  #include <event_component_fwd.h>  

    // Ensures consistency of enumeration's opaque declaration and (complete) definition. 
 

  enum Event : int { /* slowly growing list of enumerators */ }; 

16 See, e.g., https://akrzemi1.wordpress.com/2012/09/30/why-make-your-classes-final/ 

https://akrzemi1.wordpress.com/2012/09/30/why-make-your-classes-final/

