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Making C++ Software Allocator Aware 
2023-10-16, Pablo Halpern <phalpern@halpernwightsoftware.com> 

Abstract 
This paper teaches the reader how to write Allocator-aware (AA) software, a 
term for software that allows a client to supply an allocator at object 
construction. AA software provides the application developer with an effective, 
lower-cost alternative to writing bespoke types having individually customized 
memory management.1 Creating AA software, however, can be considerably 
more complex than using existing AA software. After introducing the 
requirements for an AA type compatible with BDE2 guidelines, this paper 
presents the steps of transforming a simple struct into an AA class and then 
explains how to accomplish this task for increasingly complex categories of 
types, culminating with container class templates. 

BDE 4.0 introduced a number of facilities, described herein, that make it easier 
to author AA software. Though his paper is written primarily for Bloomberg 
engineers — both those who are new to AA concepts, and those who have 
experience using older patterns of writing AA software — developers outside of 
Bloomberg can also benefit from what we learned. 

Introduction 
Effective use of allocator-aware software infrastructure (AASI) is largely a 
matter of selecting the appropriate allocator when constructing allocator-aware 
(AA) objects.3 Creating AA classes, however, is another matter and a developer 
must learn specific techniques, described in this paper, to perform the task 
properly. Developers creating applications that necessitate writing custom AA 
classes (e.g., to be used within AASI containers) will also need to assimilate 
some subset of these techniques, which are covered, step-by-step, in this 
paper. 

Making C++ software AA requires plumbing each class that might allocate 
memory to perform the following tasks. 

• Accept an allocator on construction. 

 
1 Motivational background can be found in halpern20a. Information on using allocator-aware 
software infrastructure can be found in halpern20b. 
2 BDE is an initialism that began as Bloomberg Development Environment and is now 
understood to simply describe a group within Bloomberg.    
3 For a cost-benefit analysis of supporting AASI (including a description of various AA models), 
see halpern20a. For a tour of how to use AASI effectively from the application developer’s 
perspective, see halpern20b. 
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• Store the allocator internally, whether directly or within a subobject, and 
abstain from changing it throughout the lifetime of the object. 

• Use the allocator to allocate and deallocate all owned memory. 
• Supply the allocator as a constructor parameter to each AA subobject 

(i.e., member, base-class, contained-element, or any other logically 
owned object). Note that AA subobjects might also have AA subobjects 
and thus recursively require the same plumbing. 

• Provide a member function that returns the allocator. 

Depending on the nature of the class, the increase in source code needed to 
make reusable components AA is typically between 4% and 17%.4 Despite this 
code-size increase, the task of transformation is — for the great majority of 
types written by application developers — straightforward and mechanical.5,6 
Unfortunately, undertaking this work at Bloomberg is complicated by a few 
factors. 

• Continued use of pre-C++11 compilers 
• Mismatches between the older legacy-AA interface used in the vast 

majority of pre-2023 AA code at Bloomberg, the newer bsl-AA interface 
recommended in this paper, and the C++17 Standard pmr-AA interface 
recommended for use outside of Bloomberg 

• Inadequate infrastructure support in BDE 3.x,7 especially for the bsl-AA 
and pmr-AA interfaces 

This paper describes the preferred ways to write allocator-aware software using 
BDE 4.0, which is expected to be released in 2023. 

Through a series of examples, this paper shows the reader how to transform a 
C++ class (or class template) into an AA class using the BDE model. The paper 
begins by introducing the interface and other requirements for a type to be AA 
and then moves on to five specific, highly structured categories of AA types. 

1) Simple structs with AA members: demonstration of how to add the 
necessary member types, traits, and constructors so that an (optionally 
specified) allocator can be passed to all AA data members 

2) Attribute classes: demonstration of how to identify missing constructors 
and add an optional allocator parameter to each existing constructor 

 
4 This data pertains to BDE (library) source code (c. May 2017); see lakos19, time 29:30. 
5 The bde_verify tool (bloomberg) already checks many of the AA requirements. 
6 Work is underway to integrate allocator awareness into the C++ language and compiler; see 
meredith19. 
7 Throughout this document, shaded text is used to describe issues in BDE 3.x that no longer 
apply to BDE 4.0 as well as workarounds for those issues when implementing an AA type in 
BDE 3.x.  
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3) Classes that allocate memory: demonstration of how to use the 
allocator directly in the constructors, destructor, assignment operators, 
and swap function 

4) Class templates: demonstration of how to work with a type that is 
dependent on a template parameter that might or might not be AA 

5) Containers: demonstration of how to extend allocator awareness beyond 
the constructors to include insertion and removal of (possibly AA) 
elements 

The paper finishes by describing testing techniques specific to AA components. 

This paper provides sufficient information to make most components 
consistent and interoperable with the BDE AASI. Certain wrapper classes, such 
as std::optional and std::variant, need to provide an allocator to an AA 
subobject at points other than wrapper construction, whereas smart pointers 
(e.g., std::shared_ptr) and some types with reference semantics allocate and 
construct the referenced object and control block only once and then share 
them among multiple pointer objects, thus tying the allocator to the referenced 
object rather than the referencing object. Such advanced classes use allocators 
in unique ways and require techniques that are beyond the scope of this paper 
and that do not generalize to most other classes. The author of such an 
advanced component is advised to look at the implementation of BDE 
equivalents, e.g., bslstl_optional, bdlb_variant, or bslstl_sharedptr.  

A Quick Reference for Allocator-Aware Interfaces 
For many years Bloomberg's allocator-aware types have been written following 
an interface style that we call the legacy-AA model. This model is still 
supported by the BDE infrastructure, but with the release of the allocator 
utilities in BDE 4.0, documented in this paper, we now recommend following 
the more modern bsl-AA model for writing allocator-aware types. The chief 
conceptual difference between the models is in the vocabulary type used to 
supply an allocator; the legacy-AA model directly uses a raw pointer to 
bslma::Allocator, whereas the bsl-AA model uses an instantiation of 
bsl::allocator, which is a Standard-compliant wrapper for 
bslma::Allocator*. Table 1 shows minimal examples of both interfaces, 
highlighting their differences. C++11 or later is assumed in these examples as 
well as most other examples in this paper; for a discussion of C++03 
considerations, see Appendix C. 
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Table 1: Legacy-AA and bsl-AA interfaces 

Legacy-AA interface bsl-AA interface 
class MyAAClass { 
  public: 
    // TRAITS 
    BSLMF_NESTED_TRAIT_DECLARATION( 
          MyAAClass, 
          bslma::UsesBslmaAllocator); 
 
    // CREATORS 
    MyAAClass(); 
    explicit 
      MyAAClass(bslma::Allocator *); 
    MyAAClass(const MyAAClass&, 
             bslma::Allocator * = 0); 
    MyAAClass(MyAAClass&&); 
    MyAAClass(MyAAClass&&, 
              bslma::Allocator *); 
 
    // ACCESSORS 
    bslma::Allocator 
        *allocator() const; 
}; 

class MyAAClass { 
  public: 
    // TYPES 
    typedef bsl::allocator<> 
                        allocator_type; 
 
 
    // CREATORS 
    MyAAClass(); 
    explicit 
      MyAAClass(const allocator_type&); 
    MyAAClass(const MyAAClass&, 
           const allocator_type& = {}); 
    MyAAClass(MyAAClass&&); 
    MyAAClass(MyAAClass&&, 
              const allocator_type&); 
 
    // ACCESSORS 
    allocator_type 
        get_allocator() const; 
}; 

 

Although they express it differently, each interface 1) indicates that the class is 
allocator-aware, 2) provides, for each constructor, a version having an allocator 
parameter, and 3) defines a function that returns the object’s allocator. An 
additional C++17 pmr-AA model (not shown) has an interface identical to that 
of the bsl-AA model except that the allocator type is an instantiation of 
std::pmr::polymorphic_allocator instead of bsl::allocator. In all three 
models, the allocator is polymorphic at run time; thus AA objects having the 
same type can use different types of allocators. 

The rest of this paper will describe the rationale behind the change of models 
presented above, how BDE 4.0 maximizes compatibility between the models, 
and how to apply this approach to your types. 

The Allocator-Aware Interface 
An allocator-aware class is supplied an allocator on construction, either as a 
constructor argument or using the current default allocator. This allocator is 
used to allocate all memory owned by the object, including memory owned by 
subobjects. Once constructed, an object’s allocator does not change for the 
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remainder of its lifetime.8 This section describes the interface features common 
to all allocator-aware types consistent with the BDE infrastructure.9 
Subsequent sections describe how to transform a non-AA class into an AA 
class by adding and implementing these interface features. 

The interface features described in this section comprise a concept, i.e., a set of 
supported operations on a type, including syntax and semantics, that can be 
used in a generic programming context. Even if a type uses an allocator, if it 
does not fully model the AA concept, then it will not be treated as an AA type 
by containers or AA utilities or, if it is recognized as an AA type, compilation 
will fail due to a missing interface component. For example, if a specific 
constructor does not have a variant that takes an allocator parameter, then 
that constructor cannot be used to emplace an object into a container because 
the container would not be able supply its allocator to the element. Similarly, if 
an object’s allocator is allowed to change during the object’s lifetime, it would 
violate the container’s invariant that all its elements use the same allocator and 
could result in a mismatch between the container’s lifetime and the lifetime of 
the allocators used by one or more of its elements. 

This paper adheres to a new AA interface style based on the C++17 Standard.10 
To achieve compliance with this style, an AA class, SomeClass, must have the 
following six features. 

1) The type, SomeClass::allocator_type, is a specialization of 
bsl::allocator (often bsl::allocator<>, which is an abbreviation for 
bsl::allocator<std::byte> in C++14 or bsl::allocator<unsigned 
char> prior to C++1411). The Standard Library class template 
std::pmr::polymorphic_allocator is modeled after bsl::allocator. 

In BDE 3.x, bsl::allocator does not have a default template 
argument; bsl::allocator<unsigned char> must be fully spelled out. 

 
8 Theoretically, this invariant would not hold if any of the C++ Standard Library traits 
propagate_on_container_copy_assignment, propagate_on_container_move_assignment, 
and propagate_on_container_swap evaluate to true for a given allocator. However, since 
these traits are all false for bsl::allocator and bsl::polymorphic_allocator (and 
std::pmr::polymorphic_allocator in C++17), we can ignore them when applying the 
polymorphic allocator style described in this paper. 
9 bloomberga 
10 The relationship between the C++ Standard and the style described in this paper is detailed 
in Appendix B. 
11 In most of this document, our use of the terms C++14 and C++17 refer to the library 
standard supplied by the platform rather than the language standard accepted by the 
compiler. Thus, the default argument to bsl::allocator<> will be std::byte if such a type 
exists, i.e., if the platform library conforms to the C++14 Standard Library specification. 
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2) Both of the following type traits are true: 
bsl::uses_allocator<SomeClass, bsl::allocator<>>::value 
bslma::UsesBslmaAllocator<SomeClass>::value 

Both traits implicitly evaluate to true if the typedef allocator_type 
exists and is convertible to bsl::allocator<>. That is, by adhering to 
item (1), these traits are automatically correct.12 

3) Every constructor has a variant that can be invoked with an allocator 
argument to be used by the constructed object; even the copy and move 
constructors must have variants (the extended copy and extended move 
constructors) where an allocator can be specified in addition to the object 
being copied or moved.13 If an allocator is not specified, a default 
allocator is used except that the nonextended move constructor gets the 
allocator from the moved-from object. 

4) All memory owned by the object or one of its logically owned subobjects 
is obtained from its allocator. A logically owned subobject is part of the 
object’s state and is tied to the object’s lifetime; such a subobject is not a 
temporary variable that exists only for the duration of a single member 
function invocation.14 The well-known smart pointers shared_ptr, 
unique_ptr, and (at Bloomberg) bslma::ManagedPtr can use allocators 
but follow a different set of rules and do not conform to the AA interface. 
An object to which a smart pointer points is owned by the pointer but is 
not a subobject of the pointer. 

5) An object’s allocator does not change over the course of its lifetime. 
6) The get_allocator() member function returns the object’s allocator, 

i.e., the allocator used to construct the object. 

These six features describe the allocator-specific requirements of a bsl-AA type. 
The requirements for a pmr-AA type are essentially the same except that 
allocator_type is a specialization of std::pmr::polymorphic_allocator 
instead of bsl::allocator. This document recommends idioms that are 
intended to work unchanged if third-party pmr-AA types are incorporated into 
the Bloomberg code base. 

Existing Bloomberg software that predates these recommendations uses an 
older, legacy-AA model that is no longer recommended. Both AA models are 

 
12 Until spring 2023, having the appropriate allocator_type type did not automatically cause 
UsesBslmaAllocator to evaluate to true; thus, many classes have the trait defined explicitly 
even though doing so is now redundant. 
13 The reverse is not true: A constructor with an allocator parameter does not need to have a 
variant without an allocator parameter. Such a mandatory allocator might cause confusion, 
however, when using, for example, container emplace methods where the allocator is supplied 
implicitly by the called method and not by the caller. 
14 Local-scoped variables almost always use the default allocator. For more information about 
choosing the right allocator, see halpern20b, page 9. 
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compatible with the BDE infrastructure (e.g., container classes can work with 
AA elements using either style). The legacy-AA interface style has similar 
features to the bsl-AA style (described above) but renders them differently.  

• The legacy-AA interface has no allocator_type member (or has one 
defined as void). 

• Instead of a bsl::allocator object, an allocator in the legacy-AA model 
is represented by a raw pointer to bslma::Allocator which, at run 
time, points to a specific derived-class object. 

• A class for which the bslma::UsesBslmaAllocator and 
bsl::uses_allocator traits both evaluate to true conforms to the bsl-
AA interface, whereas a class for which only 
bslma::UsesBslmaAllocator is true conforms to the legacy-AA 
interface. 

• Instead of a get_allocator() member function that returns 
allocator_type, a legacy-AA class has an allocator() member 
function that returns bslma::Allocator*. 

A side-by-side comparison of these models is concisely illustrated in Table 1, 
earlier in this paper. Note that the bslma::UsesBslmaAllocator trait must be 
explicitly defined in the legacy-AA interface but is implicitly defined in the bsl-
AA interface. 

The bsl-AA model is simpler to use and prevents coding errors that are 
common when using raw pointers.15 This newer model is also closer to the C++ 
Standard’s PMR16 model — bsl::allocator is nearly identical to 
std::pmr::polymorphic_allocator and bslma::Allocator is similar to 
std::pmr::memory_resource.17 Moreover, when a C++17 or later library is 
available, bsl::allocator is derived from bsl::polymorphic_allocator 
and bslma::Allocator is derived from bsl::memory_resource, where 
bsl::polymorphic_allocator and bsl::memory_resource are aliases for 
the same-named types in the std::pmr namespace. 

 
15 The legacy-AA interface uses a null pointer as a default allocator argument. This pointer 
must be converted to a guaranteed-nonnull pointer by calling 
bslma::Default::allocator(basicAllocator), which returns basicAllocator unchanged 
if it is non-null and otherwise the currently installed default allocator. Failing to perform this 
transformation can cause a null-pointer dereference, whereas doing it twice incurs the cost of 
unnecessary atomic reads. In contrast, bsl::allocator suffers none of these problems 
because it has a default constructor that always results in a valid (default) allocator. 
16 Polymorphic Memory Resource; see Appendix B. 
17 The standard types were modeled directly on the Bloomberg types but, with the benefit of 
hindsight, are a bit more evolved. For example, std::pmr::memory_resource lets the caller 
specify a required alignment when allocating memory, whereas bslma::Allocator did not 
until recent work made bslma::Allocator a derived class of bsl::memory_resource. 
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The bsl-AA model is also backward-compatible with the legacy-AA model 
because bslma::Allocator* is convertible to bsl::allocator<> (just as 
bsl::memory_resource* is convertible to bsl::polymorphic_allocator<>). 
The contained bslma::Allocator* can be retrieved using the mechanism 
method of bsl::allocator, should it be required for interoperability with 
legacy-AA components. 

Types in the bslstl package that are adapted from the C++ Standard Library 
conform to the bsl-AA model when using the default allocator template 
parameter of bsl::allocator, but the legacy-AA model is still the norm in the 
rest of the Bloomberg codebase; to apply the recipes described in this paper, 
anyone developing AA software at Bloomberg should have at least a passing 
familiarity with the legacy-AA model. This paper is primarily concerned with 
developing new software, and thus it focuses on the bsl-AA model, touching on 
the legacy-AA model only in situations where the two come in contact. 

Making a Simple struct AA 
If a struct contains one or more AA data members, we take on the challenge 
of passing an allocator to those members when an instance of the struct is 
created. The currently supported way to add allocator awareness to a struct is 
to augment it with all the member types, traits, and constructors needed to 
give it a bsl-AA interface and bsl-AA semantics. 

This section describes the steps needed to convert a simple struct having AA 
data members into a proper bsl-AA class. In these five steps, we must define  

1. an allocator_type member type 
2. regular and allocator-extended default constructors 
3. regular and allocator-extended copy and move constructors 
4. other regular and allocator-extended constructors (optional) 
5. a get_allocator member function 

Many of the steps needed to transform a simple struct into an AA class also 
apply (sometimes with small variations) to more complex categories of types. 

In the C++ Standard, a simple struct without user-defined constructors 
belongs to the aggregate category of types and is compatible with member-by-
member aggregate initialization.18 An unfortunate consequence of making the 
struct AA is that it will no longer be an aggregate, so aggregate initialization 
will no longer be available.19 

 
18 iso20, section 9.4.1, “dcl.init.aggr,” pp. 192-197 
19 Several methods, including using customization points and wrapper classes, have been 
proposed to pass an allocator to a struct without losing its aggregate classification. Direct 
language support for allocators is the least intrusive such proposal; see meredith19, time 
49:32. 
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For the next few examples, assume the existence of a type, DataManager, that 
is AA using the legacy-AA interface. Using the following struct Thing as a 
starting point, we’ll walk, one step at a time, through its transformation into an 
AA type: 

namespace BloombergLP { 
namespace xyzabc { 
struct Thing { 
    bsl::string d_name;  // bsl-AA member 
    DataManager d_data;  // legacy-AA member 
    int         d_score; 
    int         d_rank; 
}; 
} // close package namespace 
} // close enterprise namespace 

We begin by adding the allocator_type member type alias20: 
struct Thing { 
    // PUBLIC TYPES 
    using allocator_type = bsl::allocator<>; 
    //... 

A pitfall of this typedef is that, unlike the bslma::UsesBslmaAllocator trait, 
allocator_type is inherited by derived classes, even though those derived 
classes might not meet the other requirements of a bsl-AA type. See section 
“Pitfall: Inheriting from a bsl-AA Class.” 

To facilitate passing an allocator to the two AA data members (d_name and 
d_data), we will need to add constructors that have allocator parameters. An 
allocator-extended constructor is a constructor overload that takes, in addition 
to the usual parameters, an allocator parameter, either at the end of the 
parameter list or, less commonly, as the beginning of the parameter list 
preceded by a parameter of type bsl::allocator_arg_t. At a minimum, a 
default constructor, a copy constructor, an allocator-extended version of the 
default constructor, and an allocator-extended copy constructor are required. 
Adding a move constructor and an allocator-extended move constructor is also 
typically wise because classes that allocate memory (e.g., bsl::string and 
DataManager) usually have move constructors whose efficiency we would like 
to preserve. 

The allocator-extended default constructor has a single parameter of type 
const allocator_type&. To prevent the one-parameter constructor from 
enabling implicit conversion from allocator_type to Thing, we must add the 
explicit keyword as well. The bold part of the comment in the example below 

 
20 In BDE 3.x, the type alias must be written  

typedef bsl::allocator<unsigned char> allocator_type; 
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models the typical allocator-related language for a constructor contract,21 but 
for brevity, contract comments are omitted in subsequent examples: 

    // CREATORS 
    Thing(); 
    explicit Thing(const allocator_type& allocator); 
        // Create a 'Thing' object having a value-initialized (default) 
        // value for each attribute.  Optionally specify an 'allocator' 
        // (e.g., the address of a 'bslma::Allocator' object) to supply 
        // memory; otherwise, the default allocator is used. 

Combining these two constructors into one that has a default allocator 
argument would be tempting: 

    // BAD IDEA 
    explicit Thing(const allocator_type& allocator = {}); 

This approach, however, causes problems when using C++11 uniform 
initialization because the combined constructor, being explicit, cannot 
participate in several desirable patterns: 

Thing t = {}; // won’t compile 
extern void f(Thing); 
f({});        // won’t compile 

The allocator-extended copy and move constructors have the same parameters 
as regular copy and move constructors but with an additional allocator 
parameter: 

    Thing(const Thing& original); 
    Thing(const Thing& original, const allocator_type& allocator); 
    Thing(Thing&& original) noexcept; 
    Thing(Thing&& original, const allocator_type& allocator); 

Note that, unlike the move constructor, the extended move constructor cannot 
be noexcept because it will sometimes require memory allocation, as described 
later in section “Implementing a Class That Allocates Memory.” 

Because the original struct did not directly manage any resources, has no 
direct allocator member, and maintains no intra-member class invariants, the 
compiler can correctly automatically generate the remaining three Rule of Five22 
operations (destructor, copy-assignment operator, and move-assignment 
operator) — none of which have an allocator parameter — by defaulting them 
(preferred) or omitting them (for C++03 compatibility): 

 
21 If the two constructor overloads were documented separately, the comments, respectively, 
would be, “Use the default allocator to supply memory,” and “Use the specified 
'allocator' (e.g., the address of a 'bslma::Allocator' object) to supply 
memory.” 
22 john18 
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    ~Thing() = default; 
 
    Thing& operator=(const Thing&) = default; 
    Thing& operator=(Thing&&)      = default; 

Within this paper, modern (i.e., C++11 and later) syntax is generally assumed, 
e.g., for declaring rvalue references. Code that must be compatible with C++03 
can emulate rvalue references and move operations using the 
bslmf::MovableRef facility and must use typedef instead of using to declare 
type aliases. A detailed description of how to add move operations to an AA 
class such that they work correctly for both C++03 and C++11 can be found in 
Appendix C, Allocator-Aware Move Operations in C++03. 

Although not required, we might want to add a constructor with one parameter 
for each data member, along with an optional allocator parameter: 

    Thing(const bsl::string_view& name, 
          const DataManager&      data, 
          int                     score, 
          int                     rank, 
          const allocator_type&   allocator = {}); 

The above constructor allows a Thing to be constructed using list 
initialization23 with braces, which looks just like aggregate initialization and 
thus recovers an important feature that was lost when we changed Thing such 
that it is no longer an aggregate: 

// Construct a 'Thing' using a default allocator (C++11 and later). 
Thing theThing = { "hello", DataManager(), 2, 5 }; 

We complete the interface by adding an accessor named get_allocator to 
retrieve the allocator that was supplied at construction: 

    // ACCESSORS 
    allocator_type get_allocator() const; 

The following is our new complete class interface: 
namespace BloombergLP { 
namespace xyzabc { 
struct Thing { 
    // PUBLIC TYPES 
    using allocator_type = bsl::allocator<>; 
 
    // PUBLIC DATA MEMBERS 
    bsl::string d_name; 
    DataManager d_data; 
    int         d_score; 
    int         d_rank; 
 
    // CREATORS 
    Thing(); 
    explicit Thing(const allocator_type& allocator); 

 
23 iso20, section 9.4.4, “dcl.init.list,” pp. 199-204 
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    Thing(const Thing& original); 
    Thing(const Thing& original, const allocator_type& allocator); 
    Thing(Thing&&      original); 
    Thing(Thing&&      original, const allocator_type& allocator); 
    Thing(const bsl::string_view& name, 
          const DataManager&      data, 
          int                     score, 
          int                     rank, 
          const allocator_type&   allocator = {});  // optional 
 
    // ACCESSORS 
    allocator_type get_allocator() const; 
}; 
}  // close package namespace 
}  // close enterprise namespace 

The implementation of the allocator-extended default constructor passes the 
allocator to the constructors for each of the AA members of the struct and 
value-initializes the non-AA members in the member initializer list: 

// allocator-extended default ctor 
Thing::Thing(const allocator_type& allocator) 
  : d_name(allocator) 
  , d_data(allocator.mechanism()) // BAD IDEA; see below 
  , d_score() 
  , d_rank() 
{ 
} 

Note that, for members having the legacy-AA interface (e.g., d_data), the 
bslma::Allocator* resource must be extracted from the bsl::allocator 
object by means of the mechanism method. Calling mechanism directly in this 
way will make the code brittle in the presence of pmr-AA types. A better 
approach to handling the mismatch between a bsl-AA class and a legacy-AA 
member is to transform allocator using bslma::AllocatorUtil::adapt, 
which returns an object convertible to bsl::allocator<T>, 
bslma::Allocator*, and bsl::polymorphic_allocator<T> and thus can be 
passed as the allocator type to a bsl-AA, legacy-AA, or pmr-AA constructor: 

// allocator-extended default ctor 
Thing::Thing(const allocator_type& allocator) 
  : d_name(bslma::AllocatorUtil::adapt(allocator)) 
  , d_data(bslma::AllocatorUtil::adapt(allocator)) 
  , d_score() 
  , d_rank() 
{ 
} 

If DataManager is eventually converted to the bsl-AA model, as we recommend, 
the code in the constructor implementation above will compile and work 
correctly without change. Similarly, the implementation is robust if 
bsl::string is replaced by a different string-like type, such as 
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std::pmr::string. The same pattern applies to the other allocator-aware 
constructors24: 

// allocator-extended copy ctor 
Thing::Thing(const Thing& original, const allocator_type& allocator) 
  : d_name(original.d_name, bslma::AllocatorUtil::adapt(allocator)) 
  , d_data(original.d_data, bslma::AllocatorUtil::adapt(allocator)) 
  , d_score(original.d_score) 
  , d_rank(original.d_rank) 
{ 
} 
 
// allocator-extended move ctor; may throw 
Thing::Thing(Thing&& original, const allocator_type& allocator) 
  : d_name(bsl::move(original.d_name), 
           bslma::AllocatorUtil::adapt(allocator)) 
  , d_data(bsl::move(original.d_data), 
           bslma::AllocatorUtil::adapt(allocator)) 
  , d_score(original.d_score) 
  , d_rank(original.d_rank) 
{ 
} 
 
Thing::Thing(const bsl::string&    name, 
             const DataManager&    data, 
             int                   score, 
             int                   rank, 
             const allocator_type& allocator) 
  : d_name(name, bslma::AllocatorUtil::adapt(allocator)) 
  , d_data(data, bslma::AllocatorUtil::adapt(allocator)) 
  , d_score(score) 
  , d_rank(rank) 
{ 
} 

The nonextended default and copy constructors could be compiler generated 
(explicitly defaulted), resulting in member-wise construction. However, as each 
member is initialized, the default memory resource must be looked up. 
Theoretically, the nonextended move constructor can also be defaulted, but 
only if all AA members are known to have well-behaved move constructors that 
copy the allocator from the moved-from object. Such an approach to the move 
constructor is brittle, and writing the move constructor explicitly is safer to 
ensure that each AA member is constructed using the allocator of the moved-
from object. 

An easy-to-follow rule of thumb is to write each nonextended default, copy, and 
move constructor to simply delegate to its extended counterpart, passing the 
appropriate allocator to the extended constructor: 

 
24The bsl::move function used in this and subsequent examples is equivalent to std::move 
and is available via #include <bsl_utility.h>. 
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// regular default ctor 
Thing::Thing() 
  : Thing(allocator_type()) 
{ 
} 
 
// regular copy constructor 
Thing(const Thing& other) 
  : Thing(other, allocator_type()) 
{ 
} 
 
// regular move ctor. 
Thing::Thing(Thing&& original) noexcept 
  : Thing(bsl::move(original), original.get_allocator()) 
{ 
} 

Alternatively, the copy constructor and extended copy constructor can be 
merged into a single function having a default constructor argument: 

// regular and copy constructor 
Thing(const Thing& other, const allocator_type& allocator = {}); 

The implementation of this combined copy constructor is identical to the 
implementation of the extended copy constructor shown previously. Though 
compact and easy to understand, this version of the copy constructor breaks 
the regular pattern of the other two special constructors. Whether to combine 
the copy constructors or have the regular copy constructor delegate to the 
extended one is a matter of taste. 

Next, we declare and implement the get_allocator() method: 
    allocator_type get_allocator() const; 

The allocator can be retrieved from any of the AA data members. Thus, 
Thing::allocator_type Thing::get_allocator() const 
    { return d_name.get_allocator(); } 

is equivalent to 
Thing::allocator_type Thing::get_allocator() const 
    { return d_data.allocator(); } 

Both implementations rely on the specific AA model used by the data member: 
d_name is bsl-AA, so d_name.get_allocator() returns a bsl::allocator<>; 
d_data is legacy-AA, so d_data.allocator() returns a bslma::Allocator* 
that is then implicitly converted to the bsl::allocator<> return value. Again, 
the code will break if the data member’s AA model changes. To make the 
implementation robust if d_name becomes pmr-AA or d_data becomes bsl-AA, 
use the bslma::AATypeUtil::getAllocatorFromSubobject function,25 

 
25 getAllocatorFromSubobject provides lossless recovery of an allocator value when a bsl-AA 
class contains a pmr-AA subobject. 
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which retrieves the allocator from an AA subobject regardless of its AA model 
and converts it to Thing’s allocator_type: 

Thing::allocator_type Thing::get_allocator() const { 
    return bslma::AATypeUtil::getAllocatorFromSubobject<allocator_type>(d_name); 
} 

or 
Thing::allocator_type Thing::get_allocator() const { 
    return bslma::AATypeUtil::getAllocatorFromSubobject<allocator_type>(d_data); 
} 

Because a pure struct like Thing belongs to the simplest category of would-be 
AA types, it suffers the most relative increase in size and complexity when 
transforming from non-AA to AA.26 The size and complexity of this interface 
comes from the addition of a type alias, four constructors, and an accessor 
(getter). 

Providing maximal C++03 compatibility (see Appendix C) would require 
manually implementing both assignment operators. C++03 compatibility also 
substantially complicates the implementation of the move operations in ways 
unrelated to allocators. 

Subsequent sections will illustrate how the percentage increase in code size 
becomes progressively smaller as the complexity of the starting point increases. 

Making an Attribute Class AA 
An attribute class is similar to a simple struct except its data members are 
private and managed by invariant-preserving public manipulators and 
accessors. As before, if any of the data members are AA, the attribute class 
itself should also be AA. Relative to the simple struct, a new challenge is that 
existing constructors may need to be adapted. 

Let’s start with a non-AA attribute-class version of our Thing example: 
namespace BloombergLP { 
namespace xyzabc { 
 
class Thing { 
    // DATA 
    bsl::string d_name; 
    DataManager d_data; 
    int         d_score; 
    int         d_rank; 

 
26 meredith19 describes an approach being considered for integrating allocators into the C++ 
language. If adopted, this method would completely eliminate both the interface complexity and 
the effort needed to make most allocating types AA. 
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  public: 
    // CREATORS 
    Thing(); 
    explicit Thing(bool dataMode); 
    Thing(bsl::string_view   name, 
          const DataManager& data, 
          int                score = 0, 
          int                rank  = 5); 
 
    // MANIPULATORS 
    void setName(bsl::string_view name); 
    void setScore(int score); 
    ... 
}; 
 
}  // close package namespace 
}  // close enterprise namespace 

Defining the allocator_type and get_allocator() members is achieved 
exactly as it was for the simple struct. We must declare extended copy and 
move constructors just as we did for the simple struct example, using 
identical implementations.27 The Rule of Five operations are compiler-
generated in this example, but we should implement the nonextended copy and 
move constructors for the same reason as we did for the plain struct. 

Unlike a simple struct, our Thing attribute class has existing constructors 
that we must extend with an allocator parameter. We add a default allocator to 
the constructor taking a bool parameter like this: 

    explicit Thing(bool dataMode, const allocator_type& allocator = {}); 

The four-parameter constructor in our Thing class is a bit trickier than the 
preceding one. Just adding an allocator to the end of the parameter list does 
not suffice: 

    // BAD IDEA: partial solution at best 
    Thing(bsl::string_view      name, 
          const DataManager&    data, 
          int                   score = 0, 
          int                   rank  = 5, 
          const allocator_type& allocator = {}); 

The problem is that, although we can specify a score, rank, and allocator, 
we cannot specify just a score and an allocator. As was stated in section 
“The Allocator-Aware Interface,” every constructor argument list must be 
usable with an allocator argument.28 Typically, the way we fix this problem is 

 
27 Similarly, if we choose to provide C++03 move operations, we declare and implement those 
operations identically to the simple struct example. See Appendix C for detailed instructions 
and caveats for implementing move operations in C++03. 
28 A complaint when developing AA software is that convenient language features such as 
default arguments and aggregate initialization become so much more difficult. This complaint 
provides significant motivation for language support for allocators described in meredith19.   
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to create an allocator-parameter overload for the case of no optional 
parameters, one optional parameter, and two optional parameters: 

    Thing(bsl::string_view      name, 
          const DataManager&    data, 
          const allocator_type& allocator = {}); 
    Thing(bsl::string_view      name, 
          const DataManager&    data, 
          int                   score, 
          const allocator_type& allocator = {}); 
    Thing(bsl::string_view      name, 
          const DataManager&    data, 
          int                   score, 
          int                   rank, 
          const allocator_type& allocator = {}); 

The solution above uses the trailing-allocator convention specifying the allocator 
parameter — one of two conventions recognized by containers and AA utilities. 
The other option is to use the leading-allocator convention, a C++11 Standard 
alternative for specifying the allocator whereby the allocator parameter appears 
at the start of a parameter list, preceded by the special marker type 
bsl::allocator_arg_t. Using this convention, we need only two overloads for 
the preceding constructor: 

    Thing(bsl::string_view      name, 
          const DataManager&    data, 
          int                   score = 0, 
          int                   rank  = 5); 
    Thing(bsl::allocator_arg_t  , 
          const allocator_type& allocator, 
          bsl::string_view      name, 
          const DataManager&    data, 
          int                   score = 0, 
          int                   rank  = 5); 

The second constructor is invoked by specifying bsl::allocator_arg as the 
first argument and an allocator as the second argument: 

Thing myThing(bsl::allocator_arg, myAlloc, "Fred", myData, myScore); 

If the constructor is a template with a C++11 variadic parameter list (i.e., a 
parameter list where the last deduced parameter contains an ellipsis), the 
leading-allocator convention is the only way to add an allocator parameter.29 If 
there are no variadic constructors, then whether to provide multiple overloads 
or to use the leading-allocator convention is a matter of practicality; if the issue 
arises for only one or two constructors, having only one or two default 
parameters each, most programmers prefer to keep the trailing-allocator 
convention with a trailing defaulted allocator parameter. Because the (C++03-

 
29 Technically, extracting the last argument from a variadic argument list and determining 
whether it is an allocator at compile time should be possible. Getting this right (including 
avoiding bad or ambiguous overload resolution) requires a lot of template metaprogramming for 
which neither BDE nor the Standard Library currently have support. 
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compatible) BDE infrastructure has no way to detect which of the two 
allocator-passing conventions is used for a specific constructor, a class using 
the leading-allocator convention must define the trait 
bslmf::UsesAllocatorArgT to be true, even if used in C++11. If we choose 
this convention, the preceding declaration for the constructor taking only a 
bool would also need to change; the bslmf::UsesAllocatorArgT trait is 
defined on a per-class basis, not a per-constructor basis; all constructors 
(including the extended copy and move constructors) must use the same 
allocator-passing convention. 

Implementing a Class That Allocates Memory 
Up until now, all memory allocation and deallocation has been managed by the 
member variables of our class. If a class needs to allocate memory directly, we 
need to understand additional, not necessarily intuitive, rules and apply them 
in the destructor, assignment operators, and swap. 

Let’s assume that DataManager is a large type and is unused much of the time 
in our Thing objects. Allocating space (from the allocator) to hold the 
DataManager on an as-needed basis is more sensible than having the 
DataManager object be an always-present data member. For illustrative 
purposes, the Thing class below uses a raw pointer to hold the address of 
allocated memory, although, in practice, a smart pointer (bslma::ManagedPtr 
or std::unique_ptr) might be a better choice. For classes that directly 
manage memory, whether or not they use allocators or smart pointers, the Rule 
of Five members must be defined by the user and must not be compiler 
generated: 

class Thing { 
    // DATA 
    bsl::string  d_name; 
    DataManager *d_data_p; 
    int          d_score; 
    int          d_rank; 
    // ... 
  public: 
    // TYPES 
    using allocator_type = bsl::allocator<>; 
 
    // CREATORS 
    Thing() noexcept; 
    explicit Thing(const allocator_type& allocator) noexcept; 
    explicit Thing(bool                  dataMode, 
                   const allocator_type& allocator = {}); 
    Thing(const Thing& original); 
    Thing(const Thing& original, const allocator_type& allocator); 
    Thing(Thing&& original) noexcept; 
    Thing(Thing&& original, const allocator_type& allocator); 
    ~Thing(); 
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    // MANIPULATORS 
    Thing& operator=(const Thing& rhs); 
    Thing& operator=(Thing&& rhs); 
 
    void swap(Thing& other); 
 
    // ... 
    // ACCESSORS 
    // ... 
    allocator_type get_allocator() const; 
}; 

The get_allocator method returns the allocator held by the string member. If 
we did not already have an AA member, we would need to store the allocator 
separately in a new member of type allocator_type. 

All memory allocation and deallocation of owned subobjects should go through 
the allocator. The bslma::AllocatorUtil::newObject method is the most 
effective way to allocate and initialize a single object. If the object being created 
is AA, newObject automatically passes the allocator to the object’s constructor, 
as shown in the dataMode and extended copy constructors: 

Thing::Thing(bool dataMode, const allocator_type& allocator) 
  : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5) 
{ 
    if (dataMode) { 
        d_data_p = 
            bslma::AllocatorUtil::newObject<DataManager>(allocator); 
    } 
} 
 
Thing::Thing(const Thing& original, const allocator_type& allocator) 
  : d_name(original.name(), allocator) 
  , d_data_p(nullptr) 
  , d_score(original.d_score) 
  , d_rank(original.d_rank) 
{ 
    if (original.d_data_p) { 
        d_data_p = bslma::AllocatorUtil::newObject<DataManager>(allocator 
                                                      *original.d_data_p); 
    } 
} 

We destroy an object and release its footprint memory back to the allocator by 
calling bslma::AllocatorUtil::deleteObject: 

Thing::~Thing() 
{ 
    Bslma::AllocatorUtil::deleteObject(get_allocator(), d_data_p); 
} 

The constructors above are exception safe because only one object is being 
allocated and constructed. Any memory allocated by d_name is freed by the 
bsl::string destructor if any subsequent operation in the Thing constructor 
throws an exception. AllocatorUtil::newObject is atomic with respect to 
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exceptions in that it either succeeds entirely or cleans up after itself if the 
memory allocation or DataManager constructor throw an exception. 

The BDE 3.x library does not have the AllocatorUtil package. The most 
straightforward way to allocate and construct an object is to use the 
bslma::Allocator overload of operator new. This version of operator new 
takes a reference — not a pointer30 — to a bslma::Allocator object and 
allocates memory from that allocator. To destroy and deallocate an object 
created in this way, we use the deleteObject method of bslma::Allocator 
(or, when the most-derived type of the object is known statically, 
deleteObjectRaw). BDE 3.x versions of the dataMode and extended copy 
constructors and destructor would look different: 

Thing::Thing(bool dataMode, const allocator_type& allocator) 
  : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5) 
{ 
    if (dataMode) { 
        d_data_p = new(*allocator.mechanism()) 
                      DataManager(bslma::AllocatorUtil::adapt(allocator)); 
    } 
} 
 
Thing::Thing(const Thing& original, const allocator_type& allocator) 
  : d_name(original.name(), allocator) 
  , d_data_p(nullptr) 
  , d_score(original.d_score) 
  , d_rank(original.d_rank) 
{ 
    if (original.d_data_p) { 
        d_data_p = new(*allocator.mechanism()) 
                      DataManager(*original.d_data_p, 
                                  bslma::AllocatorUtil::adapt(allocator)); 
    } 
} 
 
Thing::~Thing() 
{ 
    get_allocator().mechanism()->deleteObject(d_data_p); 
} 

Note that the constructors pass the allocator not only to operator new for 
allocation, but also to the DataManager constructor for use within the 
allocated object. The constructors are exception safe because operator new is 
atomic with respect to exceptions, just as newObject is. Unlike newObject, 
however, operator new does not automatically determine whether 
DataObject is AA nor which AA model or allocator-passing convention it uses. 
In generic BDE 3.x code, therefore, the construction of a member like 

 
30 Warning: Passing a pointer to an allocator would still compile but with the undesirable 
runtime semantics of corrupting the allocator. 
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d_data_p would need to be separate from its allocation, with a proctor 
definition in between for exception safety (see proctor discussion, below): 

        d_data_p = allocator.mechanism()->sizeof(DataManager); 
        bslma::DeallocatorProctor<bslma::Allocator>  
                                 proctor(d_data_p, allocator.mechanism()); 
        bslma::ConstructionUtil::construct(d_data_p, 
                                           allocator.mechanism()); 

Let’s say, however, that DataManager has a method, idStr, that returns a 
unique string for each DataManager object, and let’s say that we want to 
append that string to the d_name field. The straightforward modification to the 
constructor is not exception safe: 

Thing::Thing(bool dataMode, const allocator_type& allocator) 
  : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5) 
{ 
    // NOT YET SAFE IN THE PRESENCE OF EXCEPTIONS (FIX TO FOLLOW)! 
    if (dataMode) { 
        d_data_p = 
            bslma::AllocatorUtil::newObject<DataManager>(allocator); 
        d_name += ':';                // might throw 
        d_name += d_data_p->idStr();  // might throw 
    } 
} 

If appending the data ID to the name throws an exception, the object created 
by newObject will become orphaned, resulting in a memory leak. To be 
exception safe, we need a way to reverse the effect of a successful call to 
newObject if a function subsequently fails (e.g., because an exception was 
thrown). The best way to achieve this exception safety is to use an RAII31 object 
whose destructor will automatically rewind a specified step if the current 
function returns prematurely. The BDE library refers to such an object by the 
unconventional term proctor. Every proctor type has a constructor that gives it 
control over some resource, a release method that releases control over the 
resource without destroying it, and a destructor that destroys any resource(s) 
still under the proctor’s control. In the Thing constructor example, we can use 
a bslma::DeleteObjectProctor to destroy and deallocate the DataManager 
object if an exception occurs during the string append operations32: 

 
31 RAII is an initialism for Resource Acquisition Is Initialization, a common C++ idiom whereby 
an object acquires a resource (in this case, memory) upon construction and automatically 
relinquishes it upon destruction. 
32 The C++ Standard’s unique_ptr (iso20, section 20.11.1, “unique.ptr,” pp. 630–639) can be 
used as a proctor but requires a special deleter that is not yet standard (see köppe20). 
Additionally, bdlb::ScopeExit in BDE and the scope_exit and scope_fail templates 
described in sommerlad19 can take the place of proctors but are not yet standardized. 
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Thing::Thing(bool dataMode, const allocator_type& allocator) 
  : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5) 
{ 
    if (dataMode) { 
        d_data_p = 
            bslma::AllocatorUtil::newObject<DataManager>(allocator); 
        bslma::DeleteObjectProctor<allocator_type, DataManager> 
                                      delProct(get_allocator(), d_data_p); 
        d_name += ':';                // might throw 
        d_name += d_data_p->idStr();  // might throw 
        delProct.release();           // no more ops that might throw 
    } 
} 

In the revised constructor above, a DeleteObjectProctor object is created 
immediately after the DataManager object is returned from 
AllocatorUtil::newObject and takes responsibility for destroying and 
deallocating it in the event of an exception. Once all potentially throwing 
operations have completed successfully, the release method is called to 
deactivate the proctor. 

BDE 3.x does not have DeleteObjectProctor but does have a similar 
RawDeleterProctor that assumes the legacy-AA model. Compared to 
DeleteObjectProctor, the ALLOCATOR and TYPE parameters are reversed, as 
are the constructor arguments. The ALLOCATOR parameter is a reference (not a 
pointer) type, typically bslma::Allocator or a pool type, whereas the 
allocator constructor argument is a pointer. When using bsl::allocator, 
we must retrieve that pointer by means of the mechanism accessor: 

    bslma::RawDeleterProctor<DataManager, bslma::Allocator> 
                          delProct(d_data_p, get_allocator().mechanism()); 

The BDE 4.0 library provides three new proctor class templates. 

Proctor template Reverses this operation 

bslma::DeleteObjectProctor bslma::AllocatorUtil::newObject 

bslma::DeallocateObjectProctor bslma::AllocatorUtil::allocateObject 

bslma::DeallocateBytesProctor bslma::AllocatorUtil::allocateBytes 

Note that each new proctor’s name and constructor parameter list corresponds 
to the operation it performs on premature destruction; for example, 
bslma::DeleteObjectProctor’s constructor takes the same arguments as 
bslma::AllocatorUtil::deleteObject. At the end of this section, however, 
we’ll see a way to use the Thing class as its own proctor. 

As with any class that allocates memory, the copy-assignment operator must 
take care not to overwrite the d_data_p pointer before deallocating the memory 
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to which it points nor to leave the assigned-to object in an invalid state if an 
exception is thrown: 

Thing& operator=(const Thing& rhs) 
{ 
    d_name  = rhs.d_name; 
    if (d_data_p && rhs.d_data_p) { // Assign data object. 
        *d_data_p = *rhs.d_data_p; 
    } 
    else if (d_data_p) {            // Delete data object. 
        bslma::AllocatorUtil::deleteObject(get_allocator(), d_data_p); 
        d_data_p = nullptr; 
    } 
    else if (rhs.d_data_p) {        // Allocate and copy data object. 
        d_data_p = bslma::AllocatorUtil::newObject<DataManager>( 
                                          get_allocator(), *rhs.d_data_p); 
    } 
    d_score = rhs.d_score; 
    d_rank  = rhs.d_rank; 
    return *this; 
} 

Move operations (move construction, move assignment, and swap) require 
special consideration. Ideally, a move operation on an allocating type requires 
moving only the pointers to allocated memory, without copying the contents of 
allocated memory. Let’s encapsulate this ideal in a private fastMoveFrom 
member function that will be used to implement the public move operations: 

class Thing { 
    // ... 
    // PRIVATE MANIPULATORS 
    void fastMoveFrom(Thing& other) noexcept; 
        // Move the specified 'other' Thing into '*this'. 
        // The behavior is undefined unless 'other' and '*this' 
        // are distinct objects that have the same allocator. 
    //... 
}; 
 
void 
Thing::fastMoveFrom(Thing& other) noexcept 
{ 
    BSLS_ASSERT_SAFE(get_allocator() == other.get_allocator()); 
 
    bslma::AllocatorUtil::deleteObject(get_allocator(), d_data_p); 
 
    d_name   = bsl::move(other.d_name); 
    d_data_p = other.d_data_p; other.d_data_p = nullptr;  // pointer move33 
    d_score  = other.d_score; 
    d_rank   = other.d_rank; 
} 

 
33 Using the C++14 and later Standard Library exchange template, the pointer move can be 
expressed more simply as d_data_p = std::exchange(other.d_data_p, nullptr);. 
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When the caller does not explicitly provide an allocator, the (nonextended) 
move constructor should use the moved-from object’s allocator for the newly 
constructed object. This behavior is unlike that of all other constructors, which 
use the default allocator when the caller does not provide one.34 Thus, while we 
can express the allocator-extended version of most constructors using an 
optional allocator parameter, as we did for the copy constructor, a defaulted 
parameter would produce an incorrect result for the move constructor: 

    // BAD IDEA 
    Thing(Thing&& original, const allocator_type& allocator = {}); 

Another important difference between the regular (nonextended) move 
constructor and the extended move constructor is that the former is usually 
declared noexcept, whereas the latter might allocate memory so it’s not 
necessarily noexcept. 

The nonextended move constructor can simply invoke the extended default-
constructor and delegate to fastMoveFrom: 

Thing::Thing(Thing&& original) noexcept 
  : Thing(original.get_allocator())   // C++11 delegating constructor 
//: d_name(original.get_allocator()), d_data_p(nullptr) // C++03 version 
{ 
    fastMoveFrom(original); 
} 

The extended move constructor can be invoked with an allocator different from 
that of the moved-from object. In that case, moving the pointer is problematic 
because the moved-to object’s destructor will attempt to deallocate the memory 
from the wrong allocator. The correct behavior, therefore, is performing a fast 
move only when the allocators are the same and otherwise falling back to a 
copy35: 

Thing::Thing(Thing&& original, const allocator_type& allocator) 
  : Thing(allocator)                     // C++11 delegating constructor 
//: d_name(allocator), d_data_p(nullptr) // C++03 version 
{ 
    // '*this' is in a valid (empty) state. 
    if (allocator == original.get_allocator()) { 
        fastMoveFrom(original); 
    } 
    else { 
        operator=(original);  // copy assignment 
    } 
} 

 
34 In theory, the result of a nonextended move constructor should be the same as that of 
constructing the moved-from object directly at the moved-to location. 
35 The BDE rule is that if the allocators match, the extended move constructor must behave 
like the regular move constructor, and if the allocators do not match, the extended move 
constructor must behave like the extended copy constructor. See “Expected Properties of Types 
Declaring the bslma::UsesBslmaAllocator Trait” in bloomberg. 
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The same issue affects the move-assignment operator. The allocator used by 
the moved-to object does not change during move assignment and may differ 
from the allocator used by the moved-from object. As in the case of the 
extended move constructor, we must test for the same allocator and move or 
copy as appropriate: 

Thing& Thing::operator=(Thing&& rhs) 
{ 
    if (get_allocator() != rhs.get_allocator()) { 
        operator=(rhs);  // copy assignment 
    else if (this != &rhs) { 
        fastMoveFrom(rhs); 
    } 
 
    return *this; 
} 

The third move operation is swap. Following a recent BDE convention, an AA 
class should provide a public member function swap that never throws an 
exception and may provide an ADL-discoverable free function swap that might 
throw: 

class Thing { 
    // ... 
  public: 
    // ... 
    void swap(Thing& other); 
    // ... 
}; 
 
void swap(Thing& a, Thing& b); 

If the arguments use the same allocator, then either swap operation is 
performed in constant time (no allocations or deallocations) and never throws 
an exception. Swapping the allocators for the purpose of guaranteeing the O(1), 
nonthrowing behavior may be tempting, but allowing the allocator to change 
during an object’s lifetime violates important invariants, especially within 
containers.36 For implementing swap when the objects being swapped have 
different allocators, we have three options, each of which is slower and uses 
more temporary memory than the one before. 

1) Require allocator equality as a precondition (typically verified with an 
assertion). With this implementation, swap can execute in constant 
time.37 

 
36 The bsl-AA interface is designed so that all the elements in a container of Thing will use the 
same allocator, thus ensuring locality of reference and consistent allocator lifetime throughout 
the container. It is critical, therefore, that nothing outside the container can change the 
allocator of a container element; e.g., swap(v[0],x) must not swap the allocators of v[0] 
and x. 
37 Some algorithms cannot meet their complexity guarantees unless elements can be swapped 
in constant time. The PMR containers in the Standard Library have this precondition on swap. 
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2) Perform the traditional three-move swap, where two of the moves will 
degenerate to copies that allocate memory and might throw. This option 
is the equivalent of a fully qualified call to std::swap. 

3) Provide the strong exception guarantee, whereby each object is carefully 
copied using the other object’s allocator before attempting any moves. 

All three options are reasonable choices, but our member swap implementation 
is limited to option 1 due to the BDE rule that the member swap must not 
throw. By using the regular move constructor and fastMoveFrom, we need not 
concern ourselves with the allocator at all, except (optionally) to assert that 
they are equal: 

void Thing::swap(Thing& other) noexcept { 
    BSLS_ASSERT_SAFE(get_allocator() == other.get_allocator()); 
    // All three of the following calls are 'noexcept'. 
    Thing temp1(bsl::move(*this)); 
    this->fastMoveFrom(other); 
    other.fastMoveFrom(temp1); 
} 

For the swap free function, all three implementation options are possible, but 
we’ll implement the third one for illustrative purposes. The strong exception 
guarantee means that the original objects are left unchanged if the swap exits 
with an exception: 

void swap(Thing& a, Thing& b) 
{ 
    if (a.get_allocator() == b.get_allocator()) { 
        a.swap(b); 
    } 
    else { 
        // Creating temporaries might allocate and copy, which might throw 
        Thing temp1(bsl::move(a), b.get_allocator());  
        Thing temp2(bsl::move(b), a.get_allocator()); 
 
        a.swap(temp2); // no allocation, copy, or throw 
        b.swap(temp1); // no allocation, copy, or throw 
    } 
} 

Note that if the objects being swapped have the same allocator, which is always 
the case when the objects are elements of the same container, then the swap 
itself requires no allocations and will not throw an exception, regardless of 
whether we call member swap or free-function swap. We can use this fact to 
simplify the implementations of both the copy and move assignment operators, 
in the process bestowing on them the strong exception guarantee: 

Thing& Thing::operator=(const Thing& rhs)  // simplified implementation 
{ 
    Thing(rhs, get_allocator()).swap(*this); 
    return *this; 
} 
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Thing& Thing::operator=(Thing&& rhs) 
{ 
    Thing(bsl::move(rhs), get_allocator()).swap(*this); 
    return *this; 
} 

In these rewritten assignment operators, the swap method is invoked only if the 
extended copy or move constructor succeeds without throwing an exception. 
The constructed temporary object has the same allocator as *this, so the 
subsequent swap is guaranteed to succeed in constant time. If the extended 
copy or move constructor fails, then *this is not modified. Note that these 
simplified assignment operators will sometimes result in an additional 
allocation and deallocation relative to the previous implementations. 

Taking advantage of a swap operation that is guaranteed not to throw under 
certain conditions, we can eliminate the proctor in some or all of the Thing 
constructors: 

Thing::Thing(bool dataMode, const allocator_type& allocator) 
  : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5) 
{ 
    if (dataMode) { 
        Thing temp(allocator);  // will clean up on exception 
        temp.d_data_p = 
            bslma::AllocatorUtil::newObject<DataManager>(allocator); 
        temp.d_name += ':';                     // might throw 
        temp.d_name += temp.d_data_p->idStr();  // might throw 
        this->swap(temp)           // no more ops that might throw 
    } 
} 

This version of the constructor depends on temp’s destructor to clean up the 
data manager if an exception is thrown subsequent to its creation. Effectively, 
Thing is using itself as a proctor with swap being used instead of release. An 
important caveat with this technique is that we often assert that class 
invariants are preserved on entry to a destructor. When using this class-as-its-
own-proctor technique, it is critical that an exception cannot be thrown while 
the temp object is in an invalid state. 

Implementing an AA Class Template 
Until a class template is instantiated, we cannot know whether a type related 
to a template parameter (known in the C++ Standard as a dependent type) is 
AA. Subobjects of a dependent type must be constructed in such a way that an 
allocator is passed to the constructor if and only if the dependent type is AA. 
An instantiation of a class template might not be AA unless at least one 
dependent type is AA, posing the additional challenge of writing an adaptable 
interface. 
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For this example, we’ll begin with our Thing attribute class, modified such 
that, instead of a DataManager member, it holds an object of a type specified 
by the user as a template parameter: 

namespace BloombergLP { 
namespace xyzabc { 
 
template <class TYPE> 
class Thing { 
    // DATA 
    bsl::string d_name; 
    TYPE        d_data; 
    int         d_score; 
    int         d_rank; 
 
  public: 
    // TYPES 
    using allocator_type = bsl::allocator<>; 
 
    // CREATORS 
    Thing(); 
    explicit Thing(const allocator_type& allocator); 
    Thing(bsl::string_view      name, 
          const TYPE&           data, 
          const allocator_type& allocator = {}); 
    ... 

Our Thing class template is already AA, so the type aliases, traits, and default 
constructor prototype need not change. The problem comes in the 
implementation of the allocator-extended constructors: 

template <class TYPE> 
Thing::Thing(bsl::string_view      name, 
             const TYPE&           data, 
             const allocator_type& allocator) 
  : d_name(name, bslma::AllocatorUtil::adapt(allocator)) 
  , d_data(data, ?allocator?) 
  , d_score(0) 
  , d_rank(5) 
{ 
} 

If TYPE is not AA, then the initializer for d_data should be simply 
d_data(data), but if TYPE is AA, then the initializer should be d_data(data, 
bslma::AllocatorUtil::adapt(allocator)). We can achieve this 
conditionally AA initialization by calling 
bslma::ConstructionUtil::make<TYPE>(allocator, data) and initializing 
d_data with the return value of this call: 

template <class TYPE> 
Thing::Thing(bsl::string_view      name, 
             const TYPE&           data, 
             const allocator_type& allocator) 
  : d_name(name, bslma::AllocatorUtil::adapt(allocator)) 
  , d_data(bslma::ConstructionUtil:make<TYPE>(allocator, data)) 
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  , d_score(0) 
  , d_rank(5) 
{ 
} 

All the C++11 compilers in use at Bloomberg will perform the above 
initialization without making extra copies. Any number of constructor 
arguments can be supplied after the allocator. If TYPE is not AA, then the 
allocator is ignored; if it is AA using the trailing allocator convention, then 
ConstructionUtil::make will append allocator to the argument list; and if 
it is AA using the leading allocator convention, then it will prepend 
bsl::allocator_arg and allocator to the argument list. Furthermore, if 
TYPE is legacy-AA, ConstructionUtil::make will call 
allocator.mechanism() to retrieve a bslma::Allocator pointer to pass to 
the TYPE constructor, obviating a call to AllocatorUtil::adapt. 

Unfortunately, using ConstructionUtil::make does have some limitations. 

• ConstructionUtil::make is unavailable for the Sun and IBM compilers 
because they do not reliably prevent extra copy operations, so it is 
probably inappropriate for any code that might be compiled on those 
platforms, including most code supporting C++03. 

• In language versions prior to C+17, TYPE is required to be move-
constructible; otherwise, the instantiation of ConstructionUtil::make 
will yield a compilation error. 

Most types are move-constructible, including virtually all types that are copy-
constructible (because a copy constructor is a perfectly valid move 
constructor). Nonmovable types are typically mechanisms such as mutexes, for 
which the object’s location in memory is as important as its state. If you are 
content limiting TYPE to movable types, ConstructionUtil::make is the 
cleanest way to initialize a member of template-parameter type. 

When ConstructionUtil::make does not work, we can achieve conditionally 
AA initialization by using the bslalg::ConstructorProxy<TYPE>, which 
wraps an object of TYPE and presents a consistent AA constructor interface 
regardless of whether TYPE is AA and regardless of whether it uses the leading 
or trailing allocator convention: 

template <class TYPE> 
class Thing { 
    bsl::string                    d_name; 
    bslalg::ConstructorProxy<TYPE> d_dataProxy; 
    int                            d_score; 
    int                            d_rank; 

The ConstructorProxy constructor takes 0 to 14 arguments of arbitrary type 
always followed by an allocator, i.e., it follows the trailing-allocator convention, 
but note that the allocator is not optional. As for ConstructionUtil::make, 
nonallocator arguments are passed to the proxied object’s constructor and the 
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allocator is either ignored (for non-AA types) or passed to the object’s 
constructor (for AA types). Thus, the initializer for Thing’s constructor now 
looks somewhat different: 

template <class TYPE> 
Thing::Thing(bsl::string_view      name, 
             const TYPE&           data, 
             const allocator_type& allocator) 
  : d_name(name, bslma::AllocatorUtil::adapt(allocator)) 
  , d_dataProxy(data, allocator) 
  , d_score(0) 
  , d_rank(5) 
{ 
} 

Note that we don’t need to use bslma::AllocatorUtil::adapt for the 
d_dataProxy initializer because the allocator is guaranteed to be 
bsl::allocator or bsl::polymorphic_allocator, either of which can be 
initialized from the allocator argument. 

In BDE 3.x, the allocator parameter to ConstructorProxy has type 
bslma::Allocator*, so using bslma::AllocatorUtil::adapt is required: 

  , d_dataProxy(data, bslma::AllocatorUtil::adapt(allocator)) 

In addition to the constructor changes, we must replace all uses of d_data with 
d_dataProxy.object() throughout Thing’s implementation: 

template <class TYPE> 
TYPE& Thing<TYPE>::data() { return d_dataProxy.object(); } 

The Thing template described so far is always AA because it contains a 
bsl::string, which is known to be AA. If we were to remove the string, then 
the situation would be different: 

template <class TYPE> 
class Thing { 
    bsl::string d_name; 
    TYPE        d_data; 
    int         d_score; 
    int         d_rank; 
    // … 

If TYPE is AA, then Thing<TYPE> should be AA; otherwise, Thing<TYPE> need 
not be AA. The easiest way to handle this situation is to artificially make Thing 
AA in all circumstances by adding an allocator member: 

template <class TYPE> 
class Thing { 
    bsl::allocator<> d_allocator; 
    TYPE             d_data; 
    int              d_score; 
    int              d_rank; 
    // ... 
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The allocator, though unused when TYPE is not AA, always takes up space in 
the object footprint; this wasted space is often an acceptable cost for the 
simplicity of this approach. 

If the extra pointer-sized space consumption is an issue or if having the 
interface be pure AA or pure non-AA is important, then some refactoring and 
metaprogramming will be required; let’s consider one such approach. We begin 
by declaring our Thing template with an extra Boolean parameter that defaults 
to true if TYPE is AA and false otherwise38: 

template <class TYPE, bool USES_ALLOC = 
                      BloombergLP::bslma::UsesBslmaAllocator<TYPE>::value> 
class Thing; 

The partial specialization for which USES_ALLOC is true supplies the entire AA 
interface: 

template <class TYPE> 
class Thing<TYPE, true> { 
    TYPE        d_data; 
    int         d_score; 
    int         d_rank; 
 
  public: 
    // PUBLIC TYPES 
    using allocator_type = bsl::allocator<>; 
 
    // CREATORS 
    Thing(); 
    explicit Thing(const allocator_type& allocator); 
    explicit Thing(const TYPE& data, 
                   const allocator_type& allocator = {}); 
    // .. 
    const TYPE& data() const; 
    allocator_type get_allocator() const; 
}; 

By supplying an explicit true value for USES_ALLOCATOR, this partial 
specialization can also be instantiated for non-AA types, and we will shortly 
exploit this feature. 

The allocator-extended constructors in this specialization initialize 
d_dataProxy using the specified allocator: 

template <class TYPE> 
Thing<TYPE, true>::Thing(const TYPE&           data, 
                         const allocator_type& allocator) 
  , d_data(bslma::ConstructionUtil:make<TYPE>(allocator, data)) 
  , d_score(0) 
  , d_rank(5) 
{ 

 
38 This metaprogramming technique is difficult to use for variadic class templates; indirection 
through inheritance or alias templates is required in this case. 
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} 

Although the TYPE is known to be AA, we still use ConstructionUtil:make 
because it automatically handles potential AA model and constructor-
convention mismatches for us. We could similarly use ConstructorProxy to 
achieve the same effect. 

The Thing::get_allocator method retrieves the allocator from the object 
stored within the d_data member: 

template <class TYPE> 
allocator_type Thing<TYPE, true>::get_allocator() const 
{ 
    using bslma::AATypeUtil; 
    return AATypeUtil::getAllocatorFromSubobject<allocator_type>(d_data); 
} 

We create the partial specialization where USES_ALLOC is false to inherit from 
the other (AA) specialization, hard-coding USES_ALLOC to true in the base class. 
The new specialization defines only the non-AA constructors and disables 
allocator_type (by redefining it to void) and get_allocator (by redefining it 
as private): 

template <class TYPE> 
class Thing<TYPE, false> : Thing<TYPE, true> { 
 
    // PRIVATE TYPES 
    using Base = Thing<TYPE, true>;   
 
    // NOT IMPLEMENTED 
    void get_allocator() const; 
 
  public: 
    // TYPES 
    using allocator_type = void; 
 
    // CREATORS 
    Thing() : Base() { } 
    explicit Thing(const TYPE& data) : Base(data) { } 
    ... 
}; 

This layering of the non-AA specialization on top of the AA specialization works 
because the (default-constructed) allocator in the AA implementation is 
discarded by bslma::ConstructionUtil::make. The base-class 
get_allocator() method is never instantiated for non-AA TYPEs, so no 
compilation errors result from its otherwise-invalid use of 
getAllocatorFromSubobject.  

Unfortunately, duplicate declarations of nonextended constructors are present 
in the two partial specializations of our class template, so any interface 
maintenance must be done in both places. Implementation changes, however, 
affect only the AA specialization, mitigating the maintenance issue caused by 
this duplication. 
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Several other metaprogramming approaches exist for implementing a 
conditionally AA template. Work is in progress on a set of tools to make the 
task simpler, especially when more than one dependent type is involved.  

Implementing an AA Container 
The archetypal AA type is a container class (or container class template). The 
new challenge when implementing a container is insertion and removal of 
elements (each of which might be AA) outside of the constructors and 
destructor, especially in the presence of exceptions. 

Let’s look at a simplified implementation of MyList, an AA doubly linked list 
container template: 

template <class TYPE> 
struct MyList_Node; 
 
template <class TYPE> 
class MyList { 
 
    // PRIVATE TYPES 
    using Node = MyList_Node<TYPE>; 
 
    bsl::allocator<>  d_allocator; 
    Node             *d_head_p, *d_tail_p; 
     
  public: 
    // TYPES 
    using allocator_type = bsl::allocator<>; 
 
    // CREATORS 
    MyList(); 
    explicit MyList(const allocator_type& allocator); 
    MyList(const MyList& original, const allocator_type& allocator = {}); 
    MyList(MyList&& original); 
    MyList(MyList&& original, const allocator_type& allocator); 
    ~MyList(); 
 
    // MANIPULATORS 
    MyList& operator=(const MyList& rhs); 
    MyList& operator=(MyList&& rhs); 
    template <class... ARGS> 
      void emplace_back(ARGS&&... args); 
    void pop_back(); 
    TYPE& front(); 
    TYPE& back(); 
 
    // ACCESSORS 
    const TYPE& front() const; 
    const TYPE& back() const; 
    allocator_type get_allocator() const { return d_allocator; } 
}; 
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// FREE FUNCTIONS 
bool operator==(const MyList& a, const MyList& b); 
bool operator!=(const MyList& a, const MyList& b); 

For brevity, the example omits iterators and other operations that a reusable 
list class would normally supply. We’ll focus on the emplace_back and 
pop_back member functions, which respectively insert and remove elements at 
the end of the list. The implementation of the constructors, destructor, 
assignment operators, accessors, and equality comparison operators present 
no allocator-related challenges beyond those discussed in previous sections. 
For example, the destructor can be implemented using pop_back: 

template <class TYPE> 
MyList<TYPE>::~MyList() 
{ 
    while (d_head_p) { 
        pop_back(); 
    } 
} 

The implementation of emplace_back involves three main steps. 

1) Allocate a new MyList_Node object. 
2) Construct the new element within the node.  
3) Link the new node onto the list. 

The MyList_Node class template holds an object that might or might not be 
AA. Because this class template is private to the component, however, we can 
take some shortcuts on the interface. Specifically, a node never needs to hold 
its own allocator, so we omit the get_allocator member as well as the copy 
and move constructors and assignment operators. The constructor for 
MyList_Node must conditionally pass an allocator to TYPE’s constructor, which 
we accomplish using ConstructionUtil::make: 

template <class TYPE> 
struct MyList_Node { 
    using allocator_type = allocator_type<>; 
 
    TYPE  d_value; 
    Node *d_prev_p; 
    Node *d_next_p; 
 
    template <class... ARGS> 
    MyList_Node(const allocator_type& allocator, ARGS&&... ctorArgs) 
      : d_value(bslma::ConstructionUtil::make<TYPE>(allocator, 
                                             std::forward<ARGS>(args)...)) 
    { } 
}; 

We create a new node (steps 1 and 2 in our list above) using 
bslma::AllocatorUtil::newObject: 
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template <class TYPE> 
template <class... ARGS> 
void MyList<TYPE>::emplace_back(ARGS&&... args) 
{ 
    Node *node_p = bslma::AllocatorUtil::newObject<Node>(get_allocator(), 
                                             std::forward<ARGS>(args)...); 
    // No potentially throwing operations after this point. 
    node_p->d_prev_p = d_tail_p; 
    node_p->d_next_p = nullptr; 
    d_tail_p = node_p; 
    if (!d_head_p) { 
        d_head_p = node_p; 
    } 
} 

Note that all potentially throwing operations are bundled into the single call to 
newObject; as tempting as managing node_p with a proctor seems, doing so is 
unnecessary in this case. 

Finally, let’s look at the pop_back member function, which removes the last 
element from our list. The steps in the implementation are basically the reverse 
of emplace_back. First, we unlink the last node from the list, and then we call 
bslma::AllocatorUtil::deleteObject to destroy the node (including its 
TYPE member) and release its storage back to the allocator: 

template <class TYPE> 
void MyList<TYPE>::pop_back() 
{ 
    MyList_Node<TYPE> *node_p = d_tail_p; 
    if (node_p) { 
        d_tail_p = node_p.d_prev_p; 
        if (d_tail_p) { 
            d_tail_p->d_next_p = nullptr; 
        } 
        else { 
            d_head_p = nullptr; 
        } 
 
        bslma::AllocatorUtil::deleteObject(get_allocator(), node_p); 
    } 
} 

Using a proctor is unnecessary for this implementation because neither 
destruction nor deallocation should ever throw an exception, and even if they 
did, no method exists to unwind these operations. 

Although combining memory allocation and element construction into one step 
is practical for node-based containers like MyList, separating allocation from 
construction is required for most array-based containers such as vector. 
Instead of creating nodes containing one element each, array-based containers 
allocate a block of memory suitable for holding a variable-length, contiguous 
array of elements and then construct a subset of those elements as a separate 
step during insertion. A partial implementation of a vector-like class template, 
MyVector, might hold an allocator, pointers to the start and end of the data 
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elements, and a capacity indicating how many data elements the current block 
can hold: 

template <class TYPE> 
class MyVector { 
    // DATA 
    bsl::allocator<>  d_allocator; 
    TYPE             *d_data; 
    TYPE             *d_dataEnd; 
    std::size_t       d_capacity; 
 
    // PRIVATE MANIPULATORS 
    void reallocate(std::size_t newCapacity); 
        // Change the capacity of the vector to the specified 
        // 'newCapacity' by reallocating the data array and moving all 
        // existing elements to the new array. 
 
    // ... 
}; 

Operations that construct multiple elements, such as the reallocation 
operation, could use AllocatorUtil::allocateObject to allocate the raw 
memory and ConstructionUtil::construct to construct each element 
within the allocated storage. If an exception is thrown after some elements have 
been constructed, those elements must be destroyed. The 
bslma::AutoDestructor proctor is used to manage all currently constructed 
elements and automatically destroy them in the case of an exceptional exit. 
Note that this example uses AutoDestructor to manage elements in forward 
order (incrementing the proctor as new elements are constructed at the end of 
the array), but it can also be used in reverse order (decrementing the proctor as 
new elements are constructed at the front)39: 

template <class TYPE> 
void MyVector::reallocate(std::size_t newCapacity) 
{ 
    TYPE *p = bslma::AllocatorUtil::allocateObject<TYPE>(d_allocator, 
                                                         newCapacity); 
 
    bslma::DeallocateObjectProctor<allocator_type, TYPE> 
                            dataProctor(d_allocator, p, newCapacity); 
    bslma::AutoDestructor dtorProctor(p); 
    for (TYPE *e = d_data; e != d_dataEnd; ++e, ++p) { 
        bslma::ConstructionUtil::construct(p, d_allocator, bsl::move(*e)); 
        ++dataProctor;  // Manage the newly constructed element. 
    } 
    for (TYPE *e = d_data; e != d_dataEnd; ++e) { 
        bslma::DestructionUtil::destroy(e); 
    } 
    bslma::AllocatorUtil::deallocateObject(d_allocator, d_data); 

 
39 See bloombergc. 
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    dtorProctor.release();               // Commit constructions. 
    d_data     = dataProctor.release();  // Commit allocation. 
    d_dataEnd  = p; 
    d_capacity = newCapacity; 
} 

Pitfall: Inheriting from a bsl-AA Class 
Bloomberg code has a number of classes that inherit from bsl::string, 
bsl::vector, and other bsl-AA classes.40 The derived class is often not AA: 

class StringLike : public bsl::string { 
    // String-like class that inherits from 'string' but is distinct for 
    // overload-resolution purposes. 
  public: 
    StringLike() {} 
    StringLike(const char *s) : bsl::string(s) {}    // IMPLICIT 
    // ... 
}; 

Unfortunately, StringLike inherits the allocator_type member from 
bsl::string causing bslma::UsesBslmaAllocator<StringLike> to evaluate 
true, even though StringLike provides none of the allocator-extended 
constructors needed for it to be treated as an AA type. Thus, inserting into an 
AA container such as bsl::vector<StringLike> will result in compilation 
errors as the vector code tries to pass an allocator to each StringLike 
element. 

A similar problem occurs when a legacy-AA class inherits from a bsl-AA class: 
class IntCollection : public std::vector<int> { 
    // Vector-like class that inherits from 'vector' and caries some 
    // extra data.  This is a legacy-AA class. 
 
    std::string d_name; 
 
  public: 
    BSLMF_NESTED_TRAIT_DECLARATION(IntCollection, UsesBslmaAllocator); 
 
    explicit IntCollection(const std::string&  name, 
                           bslma::Allocator   *basicAllocator = 0); 
    IntCollection(const IntCollection&  original, 
                  bslma::Allocator     *basicAllocator = 0); 
 
    // ... 
    bslma::Allocator *allocator() const; 
}; 

Again, allocator_type is inherited, so while IntCollection is AA, a 
container like bsl::vector<IntCollection> will treat it as bsl-AA and 

 
40 Sometimes inheriting from a class that was not intended for inheritance has legitimate 
engineering reasons, but doing so is generally a dubious practice. 
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produce a compilation error when it attempts to pass a bsl::allocator to the 
IntCollection constructor. 

Inheriting from a library class is always a dubious proposition with potential 
unintended consequences, so the first and best approach is often to change the 
class to use composition instead of inheritance. A second and complementary 
approach is to make the derived class fully bsl-AA (often not difficult if its 
constructors simply forward to the AA member or base class); see Appendix A 
for guidance on converting a legacy-AA class to bsl-AA. 

The simplest fix that applies to both problematic uses of inheritance is to 
neutralize the inherited allocator_type by redefining it to void: 

    using allocator_type = void;  // Neutralize inherited type 

When fixing a class that suffers from one of these inheritance-related problems, 
applying the void allocator type fix in the short term and one or both of the 
other fixes later on is safe.  

Testing AA Components 
If we hope to produce quality software, then instrumenting a class to be AA 
must be paired with testing the AA aspects of that class41 and verifying seven 
qualities.  

1) All memory belonging to the object is allocated from its allocator and not 
from global operator new or the default allocator. 

2) The object returns all owned memory to the allocator on destruction. 
3) The class object retains a copy of the specified allocator on construction 

(or the default allocator if one isn’t specified). 
4) The allocator doesn’t change, for either operand, during copy or move 

assignment. 
5) AA elements in a container use the same allocator as the container 

throughout the container’s lifetime. 
6) Memory is not leaked and objects are not corrupted if an exception 

occurs while allocating memory or while constructing or modifying an AA 
subobject. 

7) (Optional white-box test) The object allocates memory only when 
expected and in the expected quantities (number of blocks, bytes, and/or 
allocator calls). 

The bslma_testallocator and bslma_testallocatormonitor components 
facilitate achieving these test goals.42 The bslma::TestAllocator class is an 
allocator that tracks blocks and bytes allocated, deallocated, and currently in 

 
41 Some of the techniques described in this section are demonstrated in fehér19a, starting at 
time 18:08. 
42 Documentation is available in bloombergd and bloomberge. 
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use. It detects attempts to deallocate the same block twice, to deallocate a 
block from a different allocator than was used to allocate it, and to destroy the 
allocator while blocks are still outstanding (i.e., leaked). A 
bslma::TestAllocator can also be set to throw an exception after a specific 
number of allocation attempts for testing exception safety in the AA type. The 
bslma::TestAllocatorMonitor class captures the state of a specific 
bslma::TestAllocator and provides concise Boolean queries for whether 
allocation has increased or decreased (and by how much) or stayed the same 
since it was created or last reset. 

Let’s look at a simple example using bslma::TestAllocator and 
bslma::TestAllocatorMonitor to verify correct allocator-related behavior in 
our primitive linked-list container. Note that we use the common idiom of 
passing the address of a bslma::Allocator-derived class 
(bslma::TestAllocator) to the MyList constructor, taking advantage of the 
implicit conversion from bslma::Allocator* to bsl::allocator: 

{ 
    // If veryVeryVeryVerbose is true, 'ta' prints data on every operation 
    bslma::TestAllocator ta("list alloc", veryVeryVeryVerbose); 
    // ... Other code that uses 'ta' could go here. ... 
    bslma::TestAllocatorMonitor tam(&ta); 
 
    MyList<int> theList(&ta); 
    ASSERT(&ta == theList.get_allocator()); 
    ASSERT(tam.isTotalSame());   // no 'ta' allocations in the constructor 
 
    theList.emplace_back(3); 
    ASSERT(1 == tam.numBlocksInUseChange());  // exactly one block used 
 
    theList.pop_back(); 
    ASSERT(tam.isInUseSame());   // back to original memory use 
    // ... Other code that uses 'ta' could go here. ... 
} // 'ta' destructor checks for memory leaks. 

A class that has been converted from non-AA to AA might erroneously have 
residual calls to operator new that bypass the allocator. Even more common is 
forgetting to pass the allocator to a subobject’s constructor, resulting in the 
subobject erroneously using the default allocator. We can detect improper use 
of operator new by replacing global operator new and operator new[] with 
ones that direct all allocation requests to a specific test allocator (which gets its 
memory from malloc, not operator new, thus avoiding recursion)43: 

 
43 In modern C++, operator new has no exception specification and operator delete is 
marked noexcept; in C++03, they are marked throw(std::bad_alloc) and throw(), 
respectively. Thus, conditional compilation on BSLS_COMPILERFEATURES_SUPPORT_NOEXCEPT is 
needed to support both. Later C++ versions also have aligned overloads of operator new, 
requiring even more overloads in the most thorough tests. 
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namespace {  
bslma::TestAllocator& opNewAllocator() { 
    static bslma::TestAllocator ret; 
    return ret; 
} 
} 
void *operator new(std::size_t size) 
    { return opNewAllocator().allocate(size); } 
void operator delete(void *block_p) noexcept 
    { return opNewAllocator().deallocate(block_p); } 

We can detect improper use of the default allocator by setting it, either at the 
top of main or in a specific test case, to a designated test allocator using 
bslma::DefaultAllocatorGuard. When the guard goes out of scope, the 
default allocator is automatically restored to its previous value: 

bslma::TestAllocator defaultTestAllocator; 
bslma::DefaultAllocatorGuard daGuard(&defaultTestAllocator); 

Using a bslma::TestAllocatorMonitor, we can verify that operations on the 
type being tested result in no net allocations from either opNewAllocator or 
defaultTestAllocator, though transient allocations for local variables, if any, 
are expected. We’ll improve our previous test by adding these additional checks 
for incorrect use of operator new or the default allocator. We expect no 
transient allocations from the default allocator or operator new, so we use the 
isTotalSame method instead of isInUseSame to verify that no allocations at 
all were done from those sources: 

bslma::TestAllocator da("default alloc", veryVeryVeryVerbose); 
{ 
    bslma::DefaultAllocatorGuard daGuard(&da); 
    bslma::TestAllocatorMonitor onm(&opNewAllocator()); 
    bslma::TestAllocatorMonitor dam(&da); 
 
    bslma::TestAllocator ta("list alloc", veryVeryVeryVerbose); 
    bslma::TestAllocatorMonitor tam(&ta); 
 
    MyList<int> theList(&ta); 
    ASSERT(&ta == theList.get_allocator()); 
    ASSERT(tam.isInUseSame());   // No memory was consumed by constructor. 
 
    theList.emplace_back(3); 
    ASSERT(1 == tam.numBlocksInUseChange());  // exactly one block used 
 
    theList.pop_back(); 
    ASSERT(tam.isInUseSame());   // back to original memory use 
 
    ASSERT(dam.isTotalSame());   // Default allocator is unused in block. 
    ASSERT(onm.isTotalSame());   // 'operator new' is unused in block. 
 
    // 'ta' destructor checks for memory leaks. 
} 

Allocating memory correctly is a distinct concern that is conditioned, but not 
ensured, by the correct setting of the allocator itself. After each constructor 
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call, we verify that get_allocator returns the expected result and that the 
expected number of bytes or blocks was allocated from the allocator. 

An object should allocate and deallocate only from the allocator acquired on 
construction, except that transient allocations and their corresponding 
deallocations should use the global allocator or a locally defined allocator. 
Special care must be taken to ensure that copy and move constructors and 
assignment operators allocate the correct amount of memory from the correct 
allocator. The following list summarizes the six requirements. 

1) The nonextended copy constructor creates an object having the default 
allocator and allocates from only that allocator, regardless of the 
allocator held by the copied-from object. 

2) The extended copy constructor creates an object having the specified 
allocator and allocates from only that allocator, regardless of the 
allocator held by the copied-from object. 

3) The nonextended move constructor creates an object having a copy of the 
moved-from object’s allocator. Typically, the move constructor would not 
allocate any memory. 

4) The extended move constructor behaves like the regular move 
constructor if the allocator specified in the constructor arguments 
compares equal to the allocator of the moved-from object. Otherwise, the 
extended move constructor behaves like the extended copy constructor. 
Alternatively, if the element type is not AA and has a nonthrowing move 
operation, a container can perform element-by-element move, rather 
than copy. (For example, bsl::shared_ptr has optimized move 
construction but is not AA.) 

5) The copy-assignment operator allocates only from the allocator of the 
left-side operand, which does not change as a result of the assignment. 

6) The move-assignment operator should not allocate if the moved-to object 
has an allocator equal to that of the moved-from object; otherwise, the 
move-assignment operator should behave like the copy-assignment 
operator or, as in the case of the extended move constructor, perform 
element-by-element move construction or assignment. 

When testing a class template, the facilities in the bsltf package44 can help. 
The bsltf::AllocTestType, for example, is a simple bsl-AA type that we use 
to verify that our MyList container propagates its allocator to its contained 
elements: 

bslma::TestAllocator ta1("test alloc 1", veryVeryVeryVerbose); 
bslma::TestAllocator ta2("test alloc 2", veryVeryVeryVerbose); 
MyList<bsltf::AllocTestType> theList(&ta1); 
... 
bsltf::AllocTestType val5(5, &ta2); 
ASSERT(&ta2 == val5.get_allocator());  // uses specified allocator 

 
44 bloombergf 
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theList.emplace_back(val5); 
ASSERT(&ta1 == theList.back().get_allocator());  // uses list's allocator 

Our last testing goal is informally referred to as allocation-caused exception 
safety. Any class that allocates memory might encounter an out-of-memory 
exception, especially when using an allocator that obtains memory from an 
intentionally limited pool. The test allocator has a setAllocationLimit(n) 
manipulator that will cause the allocator to throw an exception at the nth 
allocation (counting from 0). This manipulator is typically used idiomatically by 
the BSLMA_TESTALLOCATOR_EXCEPTION_TEST_BEGIN/_END macros (defined in 
bslma_testallocator.h) to run an exception-safety test on a block of code 
having a deterministic allocation pattern. The macros execute the code in a try 
block within a loop, catching the exceptions thrown by the test allocator. 
Beginning with an allocation limit of 0, the limit is incremented each time an 
exception is caught. The process is repeated until the code being tested 
completes without throwing. This idiom tests that the block of code handles 
failure cleanly at each possible allocation point. After the _END macro, we 
should verify that no memory was leaked from the allocator. We use this idiom 
to test emplace_back’s exception safety: 

bslma::TestAllocator ta("list alloc", veryVeryVeryVerbose); 
BSLMA_TESTALLOCATOR_EXCEPTION_TEST_BEGIN(ta) { 
    MyList<bsltf::AllocTestType> theList(&ta); 
    for (int i = 0; i <= 5; ++i) { 
        bsltf::AllocTestType v(i);  // uses default allocator 
        theList.emplace_back(v); 
    } 
    ASSERT(5 == theList.back().data());  // minimal correctness check 
} BSLMA_TESTALLOCATOR_EXCEPTION_TEST_END 
ASSERT(0 == ta.numBlocksInUse()); 

Each iteration of the for loop requires two allocations: one for the new list 
node and one for the value of the test object stored in the node. If we had 
needed a proctor in our emplace_back implementation and forgotten to add 
one, this test would have detected a leak in the final ASSERT. 

In rare cases, we want to test specific postconditions for an exception beyond 
the absence of leaks and corruption. Our emplace_back operation, for 
example, has the strong guarantee; the list should be unmodified if the 
operation does not succeed. One way to test these postconditions is to create 
an RAII class with a destructor that encapsulates those postcondition checks. 
The class can be either general or tailored for a specific test. We create such a 
tailored class for our emplace_back test as follows: 

class PushBackExcCheck { 
    MyList<bsltf::AllocTestType> const *d_list_p; 
    MyList<bsltf::AllocTestType>        d_snapshot; // uses default alloc 
  public: 
    explicit PushBackExcCheck(const MyList<bsltf::AllocTestType> *list_p) 
      : d_list_p(list_p), d_snapshot() { } 
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    ~PushBackExcCheck() { 
        if (d_list_p) ASSERT(*d_list_p == d_snapshot); 
    } 
 
    void checkpoint() { d_snapshot = *d_list_p; } 
    void release() { d_list_p = nullptr; } 
}; 

The checkpoint method takes a snapshot of the list and should be called 
before any potentially throwing operation having the strong guarantee. The 
release method should be called when all the operations have completed 
successfully, so that the destructor does not test the exceptional conditions 
when an exception was not thrown. Employing this checker class, we can 
enhance the previous exception test: 

bslma::TestAllocator ta("list alloc", veryVeryVeryVerbose); 
BSLMA_TESTALLOCATOR_EXCEPTION_TEST_BEGIN(ta) { 
    MyList<bsltf::AllocTestType> theList(&ta); 
    PushBackExcCheck excChecker(&theList); 
    for (int i = 0; i <= 5; ++i) { 
        bsltf::AllocTestType v(i);  // uses default allocator 
        excChecker.checkpoint(); 
        theList.emplace_back(v); 
    } 
    excChecker.release(); 
    ASSERT(5 == theList.back().data()); // minimal sanity check 
} BSLMA_TESTALLOCATOR_EXCEPTION_TEST_END 
ASSERT(0 == ta.numBlocksInUse()); 

Although these allocator-specific tests add bulk to the test driver, they actually 
highlight one of the strengths of making a type AA: We can instrument every 
aspect of memory allocation easily, without modifying the allocating class and 
we can use forced allocation failures as a technique to validate exception 
safety. 

Conclusion 
Ensuring that reusable components are AA is a critical part of Bloomberg’s 
success in achieving performance, object placement, metrics gathering, 
thorough testing, and effective debugging. The effort of converting a non-AA 
component to an AA one, though not negligible, need not be excessive and is in 
most cases straightforward in nature. 

The steps defined in this paper can be condensed into the following quick 
reference for defining a bsl-AA type. 

1. Define an allocator_type member type that is an alias for 
bsl::allocator<>. 

class Thing { 
    // ... 
  public: 
    using allocator_type = bsl::allocator<> 
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2. If you need a default constructor, also define an extended default 
constructor. 

    Thing(); 
    explicit Thing(const allocator_type& allocator = {}); 

3. Define all seven of the Rule of Five Plus Two members: copy constructor, 
extended copy constructor, move constructor, extended move 
constructor, copy-assignment operator, move-assignment operator, and 
destructor. Typically, only the move constructor (and, implicitly, the 
destructor) can be noexcept. 

    Thing(const Thing&); 
    Thing(const Thing&, const allocator_type&); 
    Thing(Thing&&) noexcept; 
    Thing(Thing&&, const allocator_type&); 
    ~Thing(); 
     
    Thing& operator=(const Thing&); 
    Thing& operator=(Thing&&); 

4. For all other constructors, ensure that there also exists an extended 
version that takes an allocator, either by adding a defaulted allocator 
parameter to the end of the parameter list or by defining an overload with 
an allocator parameter (using either the trailing- or leading-allocator 
convention). 

    explicit Thing(int); 
    Thing(int, const allocator_type&); 
    // ... 
}; 

5. The implementation of each regular (nonextended) constructor should 
delegate to its corresponding extended constructor. The move 
constructor should get its allocator from its argument; all other 
nonextended constructors should use a default-constructed allocator. 

Thing::Thing() : Thing(allocator_type()) { } 
Thing::Thing(const Thing& original)  
   : Thing(original, allocator_type()) { } 
Thing::Thing(Thing&& original)  
   : Thing(original, original.get_allocator()) { } 
Thing(int i) : Thing(i, allocator_type()) { } 

6. If the type does not manage its own memory resources and has no intra-
member invariants, then the move and copy assignment operators and 
the destructor can be defaulted; otherwise, they all need to be user 
provided. 
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Thing(const Thing& original, const allocator_type& allocator) 
    : d_allocator(allocator) 
    , d_data_p(bslma::AllocatorUtil::newObject<DATA>( 
                                          *original.d_data_p)) 
    // ... 
{ 
    // ... 
} 

7. If you must define a member variable of allocator_type (as opposed to 
retrieving it from a subobject), never assign to that allocator member. 
Similarly, never swap allocators between objects. 

8. Whenever possible, provide a get_allocator accessor that either 
returns a copy of the allocator member (if any) or retrieves the allocator 
from a subobject. 

Thing::allocator_type Thing::get_allocator() const 
{ 
    return d_allocator; 
} 

For simple types, such as structs and attribute classes, the basic guidelines 
shown in this paper allow readers to plumb — swiftly and correctly — their 
own types to be AA. For more sophisticated components, the (open-source) 
BDE45 infrastructure provides low-level components (e.g., bslma_aatypeutil, 
bslma_constructionutil, and bslma_testallocator) and tools46 to 
facilitate the creation, testing, and validation of AA components. Along with 
these assets, the recipes delineated in this paper should yield robust and 
reusable AA software. 

APPENDIX A. Converting from Legacy-AA to Bsl-AA 
As of June 2020, most AA classes at Bloomberg are legacy-AA, using an old 
interface style in which allocators are conveyed as raw pointers of type 
bslma::Allocator* instead of as objects of type bsl::allocator<T>. 
Transitioning to the bsl-AA model provides the following benefits. 

• The bsl-AA model is more like the C++ Standard’s pmr-AA model and, for 
C++17 and later platform libraries, is built on and compatible with pmr. 

• The allocator can never accidentally be null because bsl::allocator 
has a default constructor that selects the currently installed default 
allocator. 

• The bsl-AA model is compatible with C++11 AA constructs. For example, 
a bsl-AA type X can be stored in a std::vector<X, 

 
45 bloombergi 
46 Refer to bloombergh for a description of the bde_verify tool, which detects a number of 
allocator-related errors and offers other guidance. 
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bsl::allocator<X>>, and will correctly inherit its allocator from the 
vector. 

To convert a class from the legacy-AA interface to the bsl-AA interface, follow 
the nine steps described here. 

1) Make bsl::allocator available for use: 

Add #include <bslma_bslallocator.h> 

In BDE 3.x, the header was named <bslma_stdallocator.h>. The old 
name continues to work. 

2) Add an allocator_type alias (or typedef in C++03) in the public part 
of the class. An existing bslma::UsesBslmaAllocator trait declaration 
is harmless but no longer necessary; the same applies to #include 
<bslma_usesbslmaallocator.h>: 

Before 
public: 
  // TRAITS 
  BSLMF_NESTED_TRAIT_DECLARATION(Thing, 
                                 bslma::UsesBslmaAllocator); 

After 
public: 
  // TYPES 
  using allocator_type = bsl::allocator<>; 

3) If the class has a member variable of type bslma::Allocator*, change it 
to allocator_type (and remove the _p suffix in the name, if any): 

Before bslma::Allocator *d_alloc_p; 

After allocator_type d_alloc; 

4) Change any constructors that take a bslma::Allocator* parameter to 
instead take a const allocator_type& parameter. Since the allocator 
parameter can no longer be confused with the bslma::Allocator type, 
change the name basicAllocator to just allocator. If the allocator 
parameter has a 0 default value, change the default expression to an 
empty initializer list: 

Before explicit Thing(int, bslma::Allocator *basicAllocator = 0); 

After explicit Thing(int, const allocator_type& allocator = {}); 

Note that if C++03 compatibility is needed, the empty initializer list ({}) 
must be replaced with an explicit constructor call (allocator_type()). 
Don’t forget to update the constructor documentation to reflect the new 
parameter names and defaults. 
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5) Remove the use of bslma::Default::allocator for denullifying an 
allocator argument: 

Before Thing::Thing(int, bslma::Allocator *basicAllocator) 
  : d_alloc_p(bslma::Default::allocator(basicAllocator)) 

After Thing::Thing(int, const allocator_type& allocator) 
  : d_alloc(allocator) 

6) If the class code initializes any legacy-AA class members, then pass the 
allocator to bslma::AllocatorUtil::adapt when initializing those 
members: 

Before 
Thing::Thing(int, bslma::Allocator *basicAllocator) 
  : d_name(basicAllocator)         // bsl-AA member 
  , d_data(basicAllocator)         // legacy-AA member 

After 
Thing::Thing(int, const allocator_type& allocator) 
  : d_name(allocator)              // bsl-AA member 
  , d_data(bslma::AllocatorUtil::adapt(allocator))  
        // legacy-AA member 

Note that this conversion can also be applied when initializing d_name 
but is unnecessary in that case because we know that d_name is bsl-AA. 

7) Add a new get_allocator method. For now, keeping a modified version 
of the allocator method is recommended for compatibility with existing 
legacy-AA client code: 

Before inline bslma::Allocator *Thing::allocator() const 
  { return d_alloc_p; } 

After 

inline Thing::allocator_type Thing::get_allocator() const 
  { return d_alloc; } 
 
inline bslma::Allocator *Thing::allocator() const 
  { return get_allocator().mechanism(); } 

8) Replace uses of operator new(bslma::Allocator&) and 
bslma::Allocator::deleteObject with 
bslma::AllocatorUtil::newObject and 
bslma::AllocatorUtil::deleteObject, respectively, and replace old 
proctors with their newer versions: 

Before 

Node *node_p = new(*allocator()) Node; 
bslma::DeallocatorProctor<bslma::Allocator> 
     nodeProct(node_p, allocator()); 
bslma::ConstructionUtil::construct(node_p->d_value.address(), 
                                   allocator(), value); 
... 
bslma::DestructionUtil::destroy(node_p->d_value.address()); 
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allocator()->deleteObject(node_p); 
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After 

Node *node_p = 
    bslma::AllocatorUtil::newObject<Node>(get_allocator()); 
bslma::DeleteObjectProctor<allocator_type, Node> 
    nodeProct(get_allocator(), node_p); 
bslma::ConstructionUtil::construct(node_p->d_value.address(), 
                                   get_allocator(), value); 
... 
bslma::DestructionUtil::destroy(node_p->d_value.address()); 
bslma::AllocatorUtil::deleteObject(get_allocator(), node_p); 

Alternatively, though the allocator member can be stored as an 
appropriate instantiation of bsl::allocator and used directly to 
allocate, deallocate, construct, and destroy an object, doing so does not 
make the code any more compact in most cases: 

After 
(Alter-
native) 

bsl::allocator<Node> nodeAlloc(get_allocator()); 
Node *node_p = nodeAlloc.allocate(1); 
bslma::DeallocateObjectProctor<bsl::allocator<Node>> 
    nodeProct(nodeAlloc, node_p); 
nodeAlloc.construct(node_p->d_value.address(), value); 
... 
nodeAlloc.destroy(node_p->d_value.address()); 
nodeAlloc.dallocate(node_p); 

9) The existing test driver should compile and run with no changes; we 
should, however, at least add tests for the bsl::uses_allocator trait 
and the get_allocator method and test each constructor with a 
bsl::allocator<> argument: 

Before 

typedef MyList<int> Obj; 
ASSERT(bslma::UsesBslmaAllocator<Obj>::value); 
... 
Obj mX(&theTestAlloc); const Obj& X = mX; 
ASSERT(&theTestAlloc == X.allocator()); 

After 

typedef MyList<int> Obj; 
ASSERT(bslma::UsesBslmaAllocator<Obj>::value); 
ASSERT((bsl::uses_allocator<Obj, bsl::allocator<>>::value)); 
... 
bsl::allocator<> bslTestAlloc(&theTestAlloc); 
Obj mX(bslTestAlloc); const Obj& X = mX; 
ASSERT(&theTestAlloc == X.allocator()); 
ASSERT(bslTestAlloc == X.get_allocator()); 
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APPENDIX B. Mapping BDE AA Development to  
C++20 PMR AA Development 

The C++17/C++20 Polymorphic Memory Resource (PMR) library is an offshoot of 
the Bloomberg allocator library. The C++17 Standard 
std::pmr::memory_resource abstract base class is nearly identical to 
Bloomberg’s bslma::Allocator class; the major differences are that the PMR 
allocate method takes an alignment argument in addition to the number of 
bytes and that the PMR public member functions are nonvirtual functions that 
call private virtual functions (e.g., allocate is a nonvirtual function that calls 
the virtual function do_allocate), following the pattern for other abstract base 
classes in the Standard. Similarly, the C++17 Standard 
std::pmr::polymorphic_allocator class template is identical to 
Bloomberg’s bsl::allocator template except that the former stores a pointer 
to a pmr::memory_resource (returned by the resource method) instead of a 
pointer to a bslma::Allocator (returned by the mechanism method). In 
C++20, polymorphic_allocator has additional methods, new_object and 
delete_object, that simplify allocating and deallocating as well as 
constructing and destroying an object from an allocator and virtually eliminate 
the need to call the memory_resource accessor.47 Note that BDE’s legacy-AA 
interface has no equivalent in the C++ Standard Library; i.e., none of the AA 
types use pmr::memory_resource* in their interfaces except indirectly 
through pmr::polymorphic_allocator. 

To construct an object in uninitialized memory, the C++20 library has 
std::uninitialized_construct_using_allocator, which works similarly 
to bslma::ConstructionUtil::construct in the BDE library, ignoring the 
allocator for non-AA types and passing it to the constructor for AA types. The 
easiest way to initialize a member variable or local variable in C++20 is with 
std::make_using_allocator, which constructs and returns a value of 
specified type, again handling or ignoring the allocator as appropriate: 

template <class TYPE> 
class Thing { 
    std::pmr::polymorphic_allocator<> d_allocator; 
    TYPE                              d_data; 
    // ... 
  public: 
    using allocator_type = std::pmr::polymorphic_allocator<>; 

 
    Thing(); 
    explicit Thing(const allocator_type& alloc); 
    // ... 
}; 

 
47 This functionality is being considered for bsl::allocator in a future release of the BDE 
library. 
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template <class TYPE> 
Thing<T>::Thing(const allocator_type& alloc) 
  : d_allocator(alloc), d_data(make_using_allocator<TYPE>(alloc)) { } 

This idiom relies on C++20’s rules for materialization of temporary variables 
(sometimes referred to as guaranteed copy elision); the return value of 
make_using_allocator is constructed directly into the d_data member 
without invoking a copy or move constructor. These construction rules make it 
unnecessary to use a wrapper class like bslalg::ConstructorProxy. The 
BDE equivalent is bslma::ConstructionUtil::make, which takes advantage 
of copy elision in all the C++11 compilers in use at Bloomberg, even though the 
new materialization rules were not standardized until C++17. 

The C++20 Standard Library contains no proctors, but std::unique_ptr can 
be even more effective in this role with the appropriate use of custom deleters, 
easy-to-author types that operate on a specified address when a unique_ptr 
goes out of scope. A unique_ptr with a deleter that invokes 
bslma::AllocatorUtil::deleteObject is straightforward to define and use 
as a proctor: 

class pmr_deleter 
{ 
    bsl::polymorphic_allocator<> d_alloc; 
 
  public: 
    template <class TYPE> 
    pmr_deleter(const bsl::polymorphic_allocator<TYPE>& alloc) 
        : d_alloc(alloc) {} 
 
    template <class TYPE> 
    void operator()(TYPE *p) 
        { bslma::AllocatorUtil::deleteObject(d_alloc, p); } 
}; 
 
... 
    my_Class *p = AllocUtil::newObject<my_Class>(alloc, &counter); 
    std::unique_ptr<my_Class, pmr_deleter> proctor(p, alloc); 
    // ... 
    proctor.release(); 

A proposal currently in review in the C++ Standards Committee calls for 
(among other things) an allocate_unique function that allocates memory, 
constructs an object in the memory, and returns a unique_ptr, thus 
combining object allocation, construction, and exception-protection into one 
step.48 Additionally, bslma::TestAllocator has no equivalent in the C++ 
Standard Library, but one has been proposed and source code is available.49 

 
48 köppe20 
49 fehér19b provides the proposal, and fehér19c offers the source for a reference 
implementation. 
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APPENDIX C. Allocator-Aware Move Operations in C++03 
Types that allocate memory often benefit from efficient move constructors and 
move-assignment operators that transfer pointers rather than copying objects. 
Move operations depend on rvalue references, which were introduced in C++11 
but are partially emulated for C++03 in the bslmf_movableref component. 
Using bslmf::MovableRef instead of rvalue references, we can write move 
constructors and move-assignment operators, as well as their allocator-
extended variants, that are portable between C++03 and C++11 and later. 

Let’s summarize the bslmf_movableref component.50 

• An instantiation of bslmf::MovableRef<T> emulates T&& (i.e., an rvalue 
reference) when compiled with a pre-C++11 compiler and is a 
nondeducible alias for T&& when compiled with a C++11 or later 
compiler. 

• An expression, expr, of type bslmf::MovableRef<T> is implicitly 
convertible to T& (i.e., an lvalue reference). The conversion can be made 
explicit by calling bslmf::MovableRefUtil::access(expr) (e.g., to 
access a member of T through a MovableRef<T>). 

• A call to bslmf::MovableRefUtil::move(ref) emulates 
std::move(ref), returning a bslmf::MovableRef to the object 
referenced by (an lvalue or rvalue) ref. 

To express move operations in C++03, we will need to use bslmf::MovableRef 
to declare not only the regular and extended move constructors, but also the 
move-assignment operator which, in C++11, often could have been implicitly 
declared. We also cannot implicitly declare the copy constructor and copy-
assignment operator because the presence of the user-defined move 
constructor and move-assignment operator would cause a C++11 compiler to 
suppress automatic generation of these operations for reasons unrelated to 
allocators. Adding the allocator-extended copy and move constructors to the 
Rule of Five gives us the Rule of Five Plus Two, the complete set of which are 
now required for our C++03-compatible Thing class, as shown in the example 
below. Note that the set includes only six separate members because the copy 
constructor and extended copy constructor are combined into one: 

    typedef bsl::allocator<> allocator_type; 
 
    Thing(const Thing&          original, 
          const allocator_type& allocator = allocator_type()); 
    Thing(bslmf::MovableRef<Thing> original) BSLS_KEYWORD_NOEXCEPT; 
    Thing(bslmf::MovableRef<Thing> original, 
          const allocator_type&    allocator); 
    ~Thing();  // OPTIONAL 
 

 
50 See complete documentation in bloombergb. 
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    Thing& operator=(const Thing& rhs); 
    Thing& operator=(bslmf::MovableRef<Thing> rhs); 
 
    allocator_type get_allocator() const; 

The above C++03 declarations require no modifications to work in C++11, 
though the presence of the user-defined copy-constructor, move-constructor, 
copy-assignment, and move-assignment declarations add significant clutter in 
cases in which the C++ compiler could have generated them automatically. The 
destructor declaration is typically required in both C++03 and C++11 because 
the compiler can seldom generate a correct destructor automatically for an 
allocating type but can be omitted for a type, like this one, that delegates all 
allocations and deallocations to its member variables. Three additional 
adaptations for C++03 are the use of typedef instead of using to declare 
allocator_type, the use of allocator_type() instead of {} to initialize the 
default allocator parameters, and the use of BSLS_KEYWORD_NOEXCEPT instead 
of the noexcept keyword to indicate that an operation cannot throw an 
exception. 

To conclude our exposition of C++03 compatibility, let’s look at the complete 
implementations of the Rule of Five Plus Two operations for the Thing type 
described in section “Making a Simple struct AA.” Note that the absence of 
delegating constructors in C++03 requires a good deal of code duplication 
between the regular and extended move constructors: 

// combined regular and allocator-extended copy ctor 
Thing::Thing(const Thing& original, const allocator_type& allocator) 
  : d_name(original.d_name, bslma::AllocatorUtil::adapt(allocator)) 
  , d_data(original.d_data, bslma::AllocatorUtil::adapt(allocator)) 
  , d_score(original.d_score) 
  , d_rank(original.d_rank) 
{ 
} 
 
// regular move ctor 
Thing::Thing(bslmf::MovableRef<Thing> original) BSLS_KEYWORD_NOEXCEPT 
  : d_name(bslmf::MovableRefUtil::move( 
              bslmf::MovableRefUtil::access(original).d_name)) 
  , d_data(bslmf::MovableRefUtil::move( 
              bslmf::MovableRefUtil::access(original).d_data)) 
  , d_score(original.d_score) 
  , d_rank(original.d_rank) 
{ 
} 
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// allocator-extended move ctor; may throw 
Thing::Thing(bslmf::MovableRef<Thing> original, 
             const allocator_type&    allocator) 
  : d_name(bslmf::MovableRefUtil::move( 
              bslmf::MovableRefUtil::access(original).d_name)), 
           bslma::AllocatorUtil::adapt(allocator)) 
  , d_data(bslmf::MovableRefUtil::move( 
              bslmf::MovableRefUtil::access(original).d_data)), 
           bslma::AllocatorUtil::adapt(allocator)) 
  , d_score(original.d_score) 
  , d_rank(original.d_rank) 
{ 
} 
 
// destructor 
Thing::~Thing()  // OPTIONAL 
{ 
} 
 
// copy-assignment operator 
Thing& Thing::operator=(const Thing& rhs) { 
    d_name  = rhs.d_name; 
    d_data  = rhs.d_data; 
    d_score = rhs.d_score; 
    d_rank  = rhs.d_rank; 
    return *this; 
} 
 
// move-assignment operator 
Thing& Thing::operator=(bslmf::MovableRef<Thing> rhs) { 
    Thing& rhsRef = rhs; 
    d_name  = bslmf::MovableRefUtil::move(rhsRef.d_name); 
    d_data  = bslmf::MovableRefUtil::move(rhsRef.d_data); 
 
    // The use of 'bslmf::MovableRefUtil::move' is optional for the 
    // two integer members.  
    d_score = bslmf::MovableRefUtil::move(rhsRef.d_score); 
    d_rank  = bslmf::MovableRefUtil::move(rhsRef.d_rank); 
    return *this; 
} 

APPENDIX D. Alternatives to Storing the Allocator  
in the Object Footprint 

The allocator for an AA class object is typically stored as a data member, 
contributing the size of a bsl::allocator (one pointer size) to the footprint of 
the object. This overhead is unacceptable in some applications. For example, 
given a vector of ten million vectors, where 90% of the inner vectors are empty, 
the wasted space due to the allocator members is about 69MB (assuming 64-
bit pointers), which might be significant in memory-constrained environments. 
The allocator member might cause a class that would fit into a single cache line 
without allocators to instead straddle two cache lines. 



Page 55 of 59 

 

If measurement and calculation show that the allocator within the memory 
footprint of a class is a problem for a specific application or library, numerous 
techniques are available to preserve allocator awareness while eliminating the 
allocator from the object’s footprint; what follows is just a small sampling. Note 
that all these examples involve creating classes not usually found in existing 
AASI libraries, but these new classes are themselves reusable for other 
situations where a small footprint is critical. Also note that these designs tend 
to favor reducing memory consumption at a (sometimes significant) cost in the 
number of (potentially branching) instructions executed. 

The most practical approach is to store the allocator within the object footprint 
only when the object is holding no other data (e.g., an empty container), and 
otherwise store the allocator on the heap as part of the object’s allocated 
memory. In our vector example, we could create a custom vector, 
UsuallyEmptyVector,51 where the allocator and the data pointer share space 
in a union. The allocator is stored in the union when the vector’s capacity is 
zero (i.e., no memory has been allocated) and in a prefix to the allocated chunk 
otherwise. We can do better though. If footprint size truly is critical, we can 
make our UsuallyEmptyVector footprint just one pointer. Assuming that 
bslma::Allocator (or bsl::memory_resource) has an alignment requirement 
of at least 2 bytes, we can steal the low-order bit of a multipurpose pointer to 
indicate whether the vector is empty; 1 would indicate an empty vector, where 
the rest of the pointer points to the memory resource, and 0 would indicate a 
nonempty vector, where the rest of the pointer points to the start of the 
allocated data area. The data area would contain the length, capacity, and 
allocator, followed by the actual vector elements. Stealing a bit from a pointer 
can be challenging to do correctly and portably but is exactly the kind of 
practical engineering that is worth doing (taking advantage of known platform 
behavior) when constraints are especially tight. 

Another approach52 that doesn’t actually reduce the object footprint but uses 
the footprint more efficiently is to implement the small-string optimization. 
Storing a data pointer, size, capacity, and allocator are all unnecessary when 
the bytes that make up the string value fit within the string footprint, and this 
approach capitalizes on that knowledge. Two bits of the last byte of the string 
footprint are used to hold bookkeeping information indicating a) whether the 
string exceeds the small-string capacity and b) whether the memory resource is 
not the same as the one returned by pmr::new_delete_resource. If both are 
zero, then the last byte becomes the null terminator for the string and the 

 
51 Calling our customized vector SmallVector or TinyVector might be tempting, but the 
vector is actually the reverse of what most people mean by a “small vector.” Existing 
SmallVector classes (e.g., see llvm19) store a small number of elements directly in the object 
footprint, making the footprint bigger rather than smaller and using much more space for 
empty vectors than our UsuallyEmptyVector would. 
52 alexandrescu04, time 46:13 
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entire footprint can be used for the small string optimization. Otherwise, the 
string representation trades off small-string space for storing the additional 
data necessary for the allocator and capacity. This approach must be applied 
carefully, with attention to the pointer layout on the target hardware. It can be 
combined with the previous approach to produce a one-pointer string that can 
still use the small-object optimization for up to 7 bytes if the new/delete 
resource is used. 

Finally, let’s consider ILAR53 allocators. This framework involves an external 
lookup table that maps address ranges to allocators. Instead of storing the 
allocator in the object footprint, an object finds its allocator by looking up its 
own address in the external table. In the case of our vector of usually empty 
vectors, the outer vector’s allocator would register the blocks it allocates in the 
lookup table so that the inner (usually empty) vectors could find themselves 
there. ILAR allocators require significant collaboration between allocators and 
clients, and the lookup table must be carefully managed, especially in a 
multithreaded environment, but for a memory-constrained application, an ILAR 
allocator might be a reasonable engineering choice. 

 
53 Inverse Lookup Allocator Registry, invented by Hyman Rosen of Bloomberg 
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