
Page 1 of 59

Making C++ Software Allocator Aware
2023-10-16, Pablo Halpern <phalpern@halpernwightsoftware.com>

Abstract
This paper teaches the reader how to write Allocator-aware (AA) software, a
term for software that allows a client to supply an allocator at object
construction. AA software provides the application developer with an effective,
lower-cost alternative to writing bespoke types having individually customized
memory management.1 Creating AA software, however, can be considerably
more complex than using existing AA software. After introducing the
requirements for an AA type compatible with BDE2 guidelines, this paper
presents the steps of transforming a simple struct into an AA class and then
explains how to accomplish this task for increasingly complex categories of
types, culminating with container class templates.

BDE 4.0 introduced a number of facilities, described herein, that make it easier
to author AA software. Though his paper is written primarily for Bloomberg
engineers — both those who are new to AA concepts, and those who have
experience using older patterns of writing AA software — developers outside of
Bloomberg can also benefit from what we learned.

Introduction
Effective use of allocator-aware software infrastructure (AASI) is largely a
matter of selecting the appropriate allocator when constructing allocator-aware
(AA) objects.3 Creating AA classes, however, is another matter and a developer
must learn specific techniques, described in this paper, to perform the task
properly. Developers creating applications that necessitate writing custom AA
classes (e.g., to be used within AASI containers) will also need to assimilate
some subset of these techniques, which are covered, step-by-step, in this
paper.

Making C++ software AA requires plumbing each class that might allocate
memory to perform the following tasks.

• Accept an allocator on construction.

1 Motivational background can be found in halpern20a. Information on using allocator-aware
software infrastructure can be found in halpern20b.
2 BDE is an initialism that began as Bloomberg Development Environment and is now
understood to simply describe a group within Bloomberg.
3 For a cost-benefit analysis of supporting AASI (including a description of various AA models),
see halpern20a. For a tour of how to use AASI effectively from the application developer’s
perspective, see halpern20b.

mailto:phalpern@halpernwightsoftware.com

Page 2 of 59

• Store the allocator internally, whether directly or within a subobject, and
abstain from changing it throughout the lifetime of the object.

• Use the allocator to allocate and deallocate all owned memory.
• Supply the allocator as a constructor parameter to each AA subobject

(i.e., member, base-class, contained-element, or any other logically
owned object). Note that AA subobjects might also have AA subobjects
and thus recursively require the same plumbing.

• Provide a member function that returns the allocator.

Depending on the nature of the class, the increase in source code needed to
make reusable components AA is typically between 4% and 17%.4 Despite this
code-size increase, the task of transformation is — for the great majority of
types written by application developers — straightforward and mechanical.5,6
Unfortunately, undertaking this work at Bloomberg is complicated by a few
factors.

• Continued use of pre-C++11 compilers
• Mismatches between the older legacy-AA interface used in the vast

majority of pre-2023 AA code at Bloomberg, the newer bsl-AA interface
recommended in this paper, and the C++17 Standard pmr-AA interface
recommended for use outside of Bloomberg

• Inadequate infrastructure support in BDE 3.x,7 especially for the bsl-AA
and pmr-AA interfaces

This paper describes the preferred ways to write allocator-aware software using
BDE 4.0, which is expected to be released in 2023.

Through a series of examples, this paper shows the reader how to transform a
C++ class (or class template) into an AA class using the BDE model. The paper
begins by introducing the interface and other requirements for a type to be AA
and then moves on to five specific, highly structured categories of AA types.

1) Simple structs with AA members: demonstration of how to add the
necessary member types, traits, and constructors so that an (optionally
specified) allocator can be passed to all AA data members

2) Attribute classes: demonstration of how to identify missing constructors
and add an optional allocator parameter to each existing constructor

4 This data pertains to BDE (library) source code (c. May 2017); see lakos19, time 29:30.
5 The bde_verify tool (bloomberg) already checks many of the AA requirements.
6 Work is underway to integrate allocator awareness into the C++ language and compiler; see
meredith19.
7 Throughout this document, shaded text is used to describe issues in BDE 3.x that no longer
apply to BDE 4.0 as well as workarounds for those issues when implementing an AA type in
BDE 3.x.

Page 3 of 59

3) Classes that allocate memory: demonstration of how to use the
allocator directly in the constructors, destructor, assignment operators,
and swap function

4) Class templates: demonstration of how to work with a type that is
dependent on a template parameter that might or might not be AA

5) Containers: demonstration of how to extend allocator awareness beyond
the constructors to include insertion and removal of (possibly AA)
elements

The paper finishes by describing testing techniques specific to AA components.

This paper provides sufficient information to make most components
consistent and interoperable with the BDE AASI. Certain wrapper classes, such
as std::optional and std::variant, need to provide an allocator to an AA
subobject at points other than wrapper construction, whereas smart pointers
(e.g., std::shared_ptr) and some types with reference semantics allocate and
construct the referenced object and control block only once and then share
them among multiple pointer objects, thus tying the allocator to the referenced
object rather than the referencing object. Such advanced classes use allocators
in unique ways and require techniques that are beyond the scope of this paper
and that do not generalize to most other classes. The author of such an
advanced component is advised to look at the implementation of BDE
equivalents, e.g., bslstl_optional, bdlb_variant, or bslstl_sharedptr.

A Quick Reference for Allocator-Aware Interfaces
For many years Bloomberg's allocator-aware types have been written following
an interface style that we call the legacy-AA model. This model is still
supported by the BDE infrastructure, but with the release of the allocator
utilities in BDE 4.0, documented in this paper, we now recommend following
the more modern bsl-AA model for writing allocator-aware types. The chief
conceptual difference between the models is in the vocabulary type used to
supply an allocator; the legacy-AA model directly uses a raw pointer to
bslma::Allocator, whereas the bsl-AA model uses an instantiation of
bsl::allocator, which is a Standard-compliant wrapper for
bslma::Allocator*. Table 1 shows minimal examples of both interfaces,
highlighting their differences. C++11 or later is assumed in these examples as
well as most other examples in this paper; for a discussion of C++03
considerations, see Appendix C.

Page 4 of 59

Table 1: Legacy-AA and bsl-AA interfaces

Legacy-AA interface bsl-AA interface
class MyAAClass {
 public:
 // TRAITS
 BSLMF_NESTED_TRAIT_DECLARATION(
 MyAAClass,
 bslma::UsesBslmaAllocator);

 // CREATORS
 MyAAClass();
 explicit
 MyAAClass(bslma::Allocator *);
 MyAAClass(const MyAAClass&,
 bslma::Allocator * = 0);
 MyAAClass(MyAAClass&&);
 MyAAClass(MyAAClass&&,
 bslma::Allocator *);

 // ACCESSORS
 bslma::Allocator
 *allocator() const;
};

class MyAAClass {
 public:
 // TYPES
 typedef bsl::allocator<>
 allocator_type;

 // CREATORS
 MyAAClass();
 explicit
 MyAAClass(const allocator_type&);
 MyAAClass(const MyAAClass&,
 const allocator_type& = {});
 MyAAClass(MyAAClass&&);
 MyAAClass(MyAAClass&&,
 const allocator_type&);

 // ACCESSORS
 allocator_type
 get_allocator() const;
};

Although they express it differently, each interface 1) indicates that the class is
allocator-aware, 2) provides, for each constructor, a version having an allocator
parameter, and 3) defines a function that returns the object’s allocator. An
additional C++17 pmr-AA model (not shown) has an interface identical to that
of the bsl-AA model except that the allocator type is an instantiation of
std::pmr::polymorphic_allocator instead of bsl::allocator. In all three
models, the allocator is polymorphic at run time; thus AA objects having the
same type can use different types of allocators.

The rest of this paper will describe the rationale behind the change of models
presented above, how BDE 4.0 maximizes compatibility between the models,
and how to apply this approach to your types.

The Allocator-Aware Interface
An allocator-aware class is supplied an allocator on construction, either as a
constructor argument or using the current default allocator. This allocator is
used to allocate all memory owned by the object, including memory owned by
subobjects. Once constructed, an object’s allocator does not change for the

Page 5 of 59

remainder of its lifetime.8 This section describes the interface features common
to all allocator-aware types consistent with the BDE infrastructure.9
Subsequent sections describe how to transform a non-AA class into an AA
class by adding and implementing these interface features.

The interface features described in this section comprise a concept, i.e., a set of
supported operations on a type, including syntax and semantics, that can be
used in a generic programming context. Even if a type uses an allocator, if it
does not fully model the AA concept, then it will not be treated as an AA type
by containers or AA utilities or, if it is recognized as an AA type, compilation
will fail due to a missing interface component. For example, if a specific
constructor does not have a variant that takes an allocator parameter, then
that constructor cannot be used to emplace an object into a container because
the container would not be able supply its allocator to the element. Similarly, if
an object’s allocator is allowed to change during the object’s lifetime, it would
violate the container’s invariant that all its elements use the same allocator and
could result in a mismatch between the container’s lifetime and the lifetime of
the allocators used by one or more of its elements.

This paper adheres to a new AA interface style based on the C++17 Standard.10
To achieve compliance with this style, an AA class, SomeClass, must have the
following six features.

1) The type, SomeClass::allocator_type, is a specialization of
bsl::allocator (often bsl::allocator<>, which is an abbreviation for
bsl::allocator<std::byte> in C++14 or bsl::allocator<unsigned
char> prior to C++1411). The Standard Library class template
std::pmr::polymorphic_allocator is modeled after bsl::allocator.

In BDE 3.x, bsl::allocator does not have a default template
argument; bsl::allocator<unsigned char> must be fully spelled out.

8 Theoretically, this invariant would not hold if any of the C++ Standard Library traits
propagate_on_container_copy_assignment, propagate_on_container_move_assignment,
and propagate_on_container_swap evaluate to true for a given allocator. However, since
these traits are all false for bsl::allocator and bsl::polymorphic_allocator (and
std::pmr::polymorphic_allocator in C++17), we can ignore them when applying the
polymorphic allocator style described in this paper.
9 bloomberga
10 The relationship between the C++ Standard and the style described in this paper is detailed
in Appendix B.
11 In most of this document, our use of the terms C++14 and C++17 refer to the library
standard supplied by the platform rather than the language standard accepted by the
compiler. Thus, the default argument to bsl::allocator<> will be std::byte if such a type
exists, i.e., if the platform library conforms to the C++14 Standard Library specification.

Page 6 of 59

2) Both of the following type traits are true:
bsl::uses_allocator<SomeClass, bsl::allocator<>>::value
bslma::UsesBslmaAllocator<SomeClass>::value

Both traits implicitly evaluate to true if the typedef allocator_type
exists and is convertible to bsl::allocator<>. That is, by adhering to
item (1), these traits are automatically correct.12

3) Every constructor has a variant that can be invoked with an allocator
argument to be used by the constructed object; even the copy and move
constructors must have variants (the extended copy and extended move
constructors) where an allocator can be specified in addition to the object
being copied or moved.13 If an allocator is not specified, a default
allocator is used except that the nonextended move constructor gets the
allocator from the moved-from object.

4) All memory owned by the object or one of its logically owned subobjects
is obtained from its allocator. A logically owned subobject is part of the
object’s state and is tied to the object’s lifetime; such a subobject is not a
temporary variable that exists only for the duration of a single member
function invocation.14 The well-known smart pointers shared_ptr,
unique_ptr, and (at Bloomberg) bslma::ManagedPtr can use allocators
but follow a different set of rules and do not conform to the AA interface.
An object to which a smart pointer points is owned by the pointer but is
not a subobject of the pointer.

5) An object’s allocator does not change over the course of its lifetime.
6) The get_allocator() member function returns the object’s allocator,

i.e., the allocator used to construct the object.

These six features describe the allocator-specific requirements of a bsl-AA type.
The requirements for a pmr-AA type are essentially the same except that
allocator_type is a specialization of std::pmr::polymorphic_allocator
instead of bsl::allocator. This document recommends idioms that are
intended to work unchanged if third-party pmr-AA types are incorporated into
the Bloomberg code base.

Existing Bloomberg software that predates these recommendations uses an
older, legacy-AA model that is no longer recommended. Both AA models are

12 Until spring 2023, having the appropriate allocator_type type did not automatically cause
UsesBslmaAllocator to evaluate to true; thus, many classes have the trait defined explicitly
even though doing so is now redundant.
13 The reverse is not true: A constructor with an allocator parameter does not need to have a
variant without an allocator parameter. Such a mandatory allocator might cause confusion,
however, when using, for example, container emplace methods where the allocator is supplied
implicitly by the called method and not by the caller.
14 Local-scoped variables almost always use the default allocator. For more information about
choosing the right allocator, see halpern20b, page 9.

Page 7 of 59

compatible with the BDE infrastructure (e.g., container classes can work with
AA elements using either style). The legacy-AA interface style has similar
features to the bsl-AA style (described above) but renders them differently.

• The legacy-AA interface has no allocator_type member (or has one
defined as void).

• Instead of a bsl::allocator object, an allocator in the legacy-AA model
is represented by a raw pointer to bslma::Allocator which, at run
time, points to a specific derived-class object.

• A class for which the bslma::UsesBslmaAllocator and
bsl::uses_allocator traits both evaluate to true conforms to the bsl-
AA interface, whereas a class for which only
bslma::UsesBslmaAllocator is true conforms to the legacy-AA
interface.

• Instead of a get_allocator() member function that returns
allocator_type, a legacy-AA class has an allocator() member
function that returns bslma::Allocator*.

A side-by-side comparison of these models is concisely illustrated in Table 1,
earlier in this paper. Note that the bslma::UsesBslmaAllocator trait must be
explicitly defined in the legacy-AA interface but is implicitly defined in the bsl-
AA interface.

The bsl-AA model is simpler to use and prevents coding errors that are
common when using raw pointers.15 This newer model is also closer to the C++
Standard’s PMR16 model — bsl::allocator is nearly identical to
std::pmr::polymorphic_allocator and bslma::Allocator is similar to
std::pmr::memory_resource.17 Moreover, when a C++17 or later library is
available, bsl::allocator is derived from bsl::polymorphic_allocator
and bslma::Allocator is derived from bsl::memory_resource, where
bsl::polymorphic_allocator and bsl::memory_resource are aliases for
the same-named types in the std::pmr namespace.

15 The legacy-AA interface uses a null pointer as a default allocator argument. This pointer
must be converted to a guaranteed-nonnull pointer by calling
bslma::Default::allocator(basicAllocator), which returns basicAllocator unchanged
if it is non-null and otherwise the currently installed default allocator. Failing to perform this
transformation can cause a null-pointer dereference, whereas doing it twice incurs the cost of
unnecessary atomic reads. In contrast, bsl::allocator suffers none of these problems
because it has a default constructor that always results in a valid (default) allocator.
16 Polymorphic Memory Resource; see Appendix B.
17 The standard types were modeled directly on the Bloomberg types but, with the benefit of
hindsight, are a bit more evolved. For example, std::pmr::memory_resource lets the caller
specify a required alignment when allocating memory, whereas bslma::Allocator did not
until recent work made bslma::Allocator a derived class of bsl::memory_resource.

Page 8 of 59

The bsl-AA model is also backward-compatible with the legacy-AA model
because bslma::Allocator* is convertible to bsl::allocator<> (just as
bsl::memory_resource* is convertible to bsl::polymorphic_allocator<>).
The contained bslma::Allocator* can be retrieved using the mechanism
method of bsl::allocator, should it be required for interoperability with
legacy-AA components.

Types in the bslstl package that are adapted from the C++ Standard Library
conform to the bsl-AA model when using the default allocator template
parameter of bsl::allocator, but the legacy-AA model is still the norm in the
rest of the Bloomberg codebase; to apply the recipes described in this paper,
anyone developing AA software at Bloomberg should have at least a passing
familiarity with the legacy-AA model. This paper is primarily concerned with
developing new software, and thus it focuses on the bsl-AA model, touching on
the legacy-AA model only in situations where the two come in contact.

Making a Simple struct AA
If a struct contains one or more AA data members, we take on the challenge
of passing an allocator to those members when an instance of the struct is
created. The currently supported way to add allocator awareness to a struct is
to augment it with all the member types, traits, and constructors needed to
give it a bsl-AA interface and bsl-AA semantics.

This section describes the steps needed to convert a simple struct having AA
data members into a proper bsl-AA class. In these five steps, we must define

1. an allocator_type member type
2. regular and allocator-extended default constructors
3. regular and allocator-extended copy and move constructors
4. other regular and allocator-extended constructors (optional)
5. a get_allocator member function

Many of the steps needed to transform a simple struct into an AA class also
apply (sometimes with small variations) to more complex categories of types.

In the C++ Standard, a simple struct without user-defined constructors
belongs to the aggregate category of types and is compatible with member-by-
member aggregate initialization.18 An unfortunate consequence of making the
struct AA is that it will no longer be an aggregate, so aggregate initialization
will no longer be available.19

18 iso20, section 9.4.1, “dcl.init.aggr,” pp. 192-197
19 Several methods, including using customization points and wrapper classes, have been
proposed to pass an allocator to a struct without losing its aggregate classification. Direct
language support for allocators is the least intrusive such proposal; see meredith19, time
49:32.

Page 9 of 59

For the next few examples, assume the existence of a type, DataManager, that
is AA using the legacy-AA interface. Using the following struct Thing as a
starting point, we’ll walk, one step at a time, through its transformation into an
AA type:

namespace BloombergLP {
namespace xyzabc {
struct Thing {
 bsl::string d_name; // bsl-AA member
 DataManager d_data; // legacy-AA member
 int d_score;
 int d_rank;
};
} // close package namespace
} // close enterprise namespace

We begin by adding the allocator_type member type alias20:
struct Thing {
 // PUBLIC TYPES
 using allocator_type = bsl::allocator<>;
 //...

A pitfall of this typedef is that, unlike the bslma::UsesBslmaAllocator trait,
allocator_type is inherited by derived classes, even though those derived
classes might not meet the other requirements of a bsl-AA type. See section
“Pitfall: Inheriting from a bsl-AA Class.”

To facilitate passing an allocator to the two AA data members (d_name and
d_data), we will need to add constructors that have allocator parameters. An
allocator-extended constructor is a constructor overload that takes, in addition
to the usual parameters, an allocator parameter, either at the end of the
parameter list or, less commonly, as the beginning of the parameter list
preceded by a parameter of type bsl::allocator_arg_t. At a minimum, a
default constructor, a copy constructor, an allocator-extended version of the
default constructor, and an allocator-extended copy constructor are required.
Adding a move constructor and an allocator-extended move constructor is also
typically wise because classes that allocate memory (e.g., bsl::string and
DataManager) usually have move constructors whose efficiency we would like
to preserve.

The allocator-extended default constructor has a single parameter of type
const allocator_type&. To prevent the one-parameter constructor from
enabling implicit conversion from allocator_type to Thing, we must add the
explicit keyword as well. The bold part of the comment in the example below

20 In BDE 3.x, the type alias must be written

typedef bsl::allocator<unsigned char> allocator_type;

Page 10 of 59

models the typical allocator-related language for a constructor contract,21 but
for brevity, contract comments are omitted in subsequent examples:

 // CREATORS
 Thing();
 explicit Thing(const allocator_type& allocator);
 // Create a 'Thing' object having a value-initialized (default)
 // value for each attribute. Optionally specify an 'allocator'
 // (e.g., the address of a 'bslma::Allocator' object) to supply
 // memory; otherwise, the default allocator is used.

Combining these two constructors into one that has a default allocator
argument would be tempting:

 // BAD IDEA
 explicit Thing(const allocator_type& allocator = {});

This approach, however, causes problems when using C++11 uniform
initialization because the combined constructor, being explicit, cannot
participate in several desirable patterns:

Thing t = {}; // won’t compile
extern void f(Thing);
f({}); // won’t compile

The allocator-extended copy and move constructors have the same parameters
as regular copy and move constructors but with an additional allocator
parameter:

 Thing(const Thing& original);
 Thing(const Thing& original, const allocator_type& allocator);
 Thing(Thing&& original) noexcept;
 Thing(Thing&& original, const allocator_type& allocator);

Note that, unlike the move constructor, the extended move constructor cannot
be noexcept because it will sometimes require memory allocation, as described
later in section “Implementing a Class That Allocates Memory.”

Because the original struct did not directly manage any resources, has no
direct allocator member, and maintains no intra-member class invariants, the
compiler can correctly automatically generate the remaining three Rule of Five22
operations (destructor, copy-assignment operator, and move-assignment
operator) — none of which have an allocator parameter — by defaulting them
(preferred) or omitting them (for C++03 compatibility):

21 If the two constructor overloads were documented separately, the comments, respectively,
would be, “Use the default allocator to supply memory,” and “Use the specified
'allocator' (e.g., the address of a 'bslma::Allocator' object) to supply
memory.”
22 john18

Page 11 of 59

 ~Thing() = default;

 Thing& operator=(const Thing&) = default;
 Thing& operator=(Thing&&) = default;

Within this paper, modern (i.e., C++11 and later) syntax is generally assumed,
e.g., for declaring rvalue references. Code that must be compatible with C++03
can emulate rvalue references and move operations using the
bslmf::MovableRef facility and must use typedef instead of using to declare
type aliases. A detailed description of how to add move operations to an AA
class such that they work correctly for both C++03 and C++11 can be found in
Appendix C, Allocator-Aware Move Operations in C++03.

Although not required, we might want to add a constructor with one parameter
for each data member, along with an optional allocator parameter:

 Thing(const bsl::string_view& name,
 const DataManager& data,
 int score,
 int rank,
 const allocator_type& allocator = {});

The above constructor allows a Thing to be constructed using list
initialization23 with braces, which looks just like aggregate initialization and
thus recovers an important feature that was lost when we changed Thing such
that it is no longer an aggregate:

// Construct a 'Thing' using a default allocator (C++11 and later).
Thing theThing = { "hello", DataManager(), 2, 5 };

We complete the interface by adding an accessor named get_allocator to
retrieve the allocator that was supplied at construction:

 // ACCESSORS
 allocator_type get_allocator() const;

The following is our new complete class interface:
namespace BloombergLP {
namespace xyzabc {
struct Thing {
 // PUBLIC TYPES
 using allocator_type = bsl::allocator<>;

 // PUBLIC DATA MEMBERS
 bsl::string d_name;
 DataManager d_data;
 int d_score;
 int d_rank;

 // CREATORS
 Thing();
 explicit Thing(const allocator_type& allocator);

23 iso20, section 9.4.4, “dcl.init.list,” pp. 199-204

Page 12 of 59

 Thing(const Thing& original);
 Thing(const Thing& original, const allocator_type& allocator);
 Thing(Thing&& original);
 Thing(Thing&& original, const allocator_type& allocator);
 Thing(const bsl::string_view& name,
 const DataManager& data,
 int score,
 int rank,
 const allocator_type& allocator = {}); // optional

 // ACCESSORS
 allocator_type get_allocator() const;
};
} // close package namespace
} // close enterprise namespace

The implementation of the allocator-extended default constructor passes the
allocator to the constructors for each of the AA members of the struct and
value-initializes the non-AA members in the member initializer list:

// allocator-extended default ctor
Thing::Thing(const allocator_type& allocator)
 : d_name(allocator)
 , d_data(allocator.mechanism()) // BAD IDEA; see below
 , d_score()
 , d_rank()
{
}

Note that, for members having the legacy-AA interface (e.g., d_data), the
bslma::Allocator* resource must be extracted from the bsl::allocator
object by means of the mechanism method. Calling mechanism directly in this
way will make the code brittle in the presence of pmr-AA types. A better
approach to handling the mismatch between a bsl-AA class and a legacy-AA
member is to transform allocator using bslma::AllocatorUtil::adapt,
which returns an object convertible to bsl::allocator<T>,
bslma::Allocator*, and bsl::polymorphic_allocator<T> and thus can be
passed as the allocator type to a bsl-AA, legacy-AA, or pmr-AA constructor:

// allocator-extended default ctor
Thing::Thing(const allocator_type& allocator)
 : d_name(bslma::AllocatorUtil::adapt(allocator))
 , d_data(bslma::AllocatorUtil::adapt(allocator))
 , d_score()
 , d_rank()
{
}

If DataManager is eventually converted to the bsl-AA model, as we recommend,
the code in the constructor implementation above will compile and work
correctly without change. Similarly, the implementation is robust if
bsl::string is replaced by a different string-like type, such as

Page 13 of 59

std::pmr::string. The same pattern applies to the other allocator-aware
constructors24:

// allocator-extended copy ctor
Thing::Thing(const Thing& original, const allocator_type& allocator)
 : d_name(original.d_name, bslma::AllocatorUtil::adapt(allocator))
 , d_data(original.d_data, bslma::AllocatorUtil::adapt(allocator))
 , d_score(original.d_score)
 , d_rank(original.d_rank)
{
}

// allocator-extended move ctor; may throw
Thing::Thing(Thing&& original, const allocator_type& allocator)
 : d_name(bsl::move(original.d_name),
 bslma::AllocatorUtil::adapt(allocator))
 , d_data(bsl::move(original.d_data),
 bslma::AllocatorUtil::adapt(allocator))
 , d_score(original.d_score)
 , d_rank(original.d_rank)
{
}

Thing::Thing(const bsl::string& name,
 const DataManager& data,
 int score,
 int rank,
 const allocator_type& allocator)
 : d_name(name, bslma::AllocatorUtil::adapt(allocator))
 , d_data(data, bslma::AllocatorUtil::adapt(allocator))
 , d_score(score)
 , d_rank(rank)
{
}

The nonextended default and copy constructors could be compiler generated
(explicitly defaulted), resulting in member-wise construction. However, as each
member is initialized, the default memory resource must be looked up.
Theoretically, the nonextended move constructor can also be defaulted, but
only if all AA members are known to have well-behaved move constructors that
copy the allocator from the moved-from object. Such an approach to the move
constructor is brittle, and writing the move constructor explicitly is safer to
ensure that each AA member is constructed using the allocator of the moved-
from object.

An easy-to-follow rule of thumb is to write each nonextended default, copy, and
move constructor to simply delegate to its extended counterpart, passing the
appropriate allocator to the extended constructor:

24The bsl::move function used in this and subsequent examples is equivalent to std::move
and is available via #include <bsl_utility.h>.

Page 14 of 59

// regular default ctor
Thing::Thing()
 : Thing(allocator_type())
{
}

// regular copy constructor
Thing(const Thing& other)
 : Thing(other, allocator_type())
{
}

// regular move ctor.
Thing::Thing(Thing&& original) noexcept
 : Thing(bsl::move(original), original.get_allocator())
{
}

Alternatively, the copy constructor and extended copy constructor can be
merged into a single function having a default constructor argument:

// regular and copy constructor
Thing(const Thing& other, const allocator_type& allocator = {});

The implementation of this combined copy constructor is identical to the
implementation of the extended copy constructor shown previously. Though
compact and easy to understand, this version of the copy constructor breaks
the regular pattern of the other two special constructors. Whether to combine
the copy constructors or have the regular copy constructor delegate to the
extended one is a matter of taste.

Next, we declare and implement the get_allocator() method:
 allocator_type get_allocator() const;

The allocator can be retrieved from any of the AA data members. Thus,
Thing::allocator_type Thing::get_allocator() const
 { return d_name.get_allocator(); }

is equivalent to
Thing::allocator_type Thing::get_allocator() const
 { return d_data.allocator(); }

Both implementations rely on the specific AA model used by the data member:
d_name is bsl-AA, so d_name.get_allocator() returns a bsl::allocator<>;
d_data is legacy-AA, so d_data.allocator() returns a bslma::Allocator*
that is then implicitly converted to the bsl::allocator<> return value. Again,
the code will break if the data member’s AA model changes. To make the
implementation robust if d_name becomes pmr-AA or d_data becomes bsl-AA,
use the bslma::AATypeUtil::getAllocatorFromSubobject function,25

25 getAllocatorFromSubobject provides lossless recovery of an allocator value when a bsl-AA
class contains a pmr-AA subobject.

Page 15 of 59

which retrieves the allocator from an AA subobject regardless of its AA model
and converts it to Thing’s allocator_type:

Thing::allocator_type Thing::get_allocator() const {
 return bslma::AATypeUtil::getAllocatorFromSubobject<allocator_type>(d_name);
}

or
Thing::allocator_type Thing::get_allocator() const {
 return bslma::AATypeUtil::getAllocatorFromSubobject<allocator_type>(d_data);
}

Because a pure struct like Thing belongs to the simplest category of would-be
AA types, it suffers the most relative increase in size and complexity when
transforming from non-AA to AA.26 The size and complexity of this interface
comes from the addition of a type alias, four constructors, and an accessor
(getter).

Providing maximal C++03 compatibility (see Appendix C) would require
manually implementing both assignment operators. C++03 compatibility also
substantially complicates the implementation of the move operations in ways
unrelated to allocators.

Subsequent sections will illustrate how the percentage increase in code size
becomes progressively smaller as the complexity of the starting point increases.

Making an Attribute Class AA
An attribute class is similar to a simple struct except its data members are
private and managed by invariant-preserving public manipulators and
accessors. As before, if any of the data members are AA, the attribute class
itself should also be AA. Relative to the simple struct, a new challenge is that
existing constructors may need to be adapted.

Let’s start with a non-AA attribute-class version of our Thing example:
namespace BloombergLP {
namespace xyzabc {

class Thing {
 // DATA
 bsl::string d_name;
 DataManager d_data;
 int d_score;
 int d_rank;

26 meredith19 describes an approach being considered for integrating allocators into the C++
language. If adopted, this method would completely eliminate both the interface complexity and
the effort needed to make most allocating types AA.

Page 16 of 59

 public:
 // CREATORS
 Thing();
 explicit Thing(bool dataMode);
 Thing(bsl::string_view name,
 const DataManager& data,
 int score = 0,
 int rank = 5);

 // MANIPULATORS
 void setName(bsl::string_view name);
 void setScore(int score);
 ...
};

} // close package namespace
} // close enterprise namespace

Defining the allocator_type and get_allocator() members is achieved
exactly as it was for the simple struct. We must declare extended copy and
move constructors just as we did for the simple struct example, using
identical implementations.27 The Rule of Five operations are compiler-
generated in this example, but we should implement the nonextended copy and
move constructors for the same reason as we did for the plain struct.

Unlike a simple struct, our Thing attribute class has existing constructors
that we must extend with an allocator parameter. We add a default allocator to
the constructor taking a bool parameter like this:

 explicit Thing(bool dataMode, const allocator_type& allocator = {});

The four-parameter constructor in our Thing class is a bit trickier than the
preceding one. Just adding an allocator to the end of the parameter list does
not suffice:

 // BAD IDEA: partial solution at best
 Thing(bsl::string_view name,
 const DataManager& data,
 int score = 0,
 int rank = 5,
 const allocator_type& allocator = {});

The problem is that, although we can specify a score, rank, and allocator,
we cannot specify just a score and an allocator. As was stated in section
“The Allocator-Aware Interface,” every constructor argument list must be
usable with an allocator argument.28 Typically, the way we fix this problem is

27 Similarly, if we choose to provide C++03 move operations, we declare and implement those
operations identically to the simple struct example. See Appendix C for detailed instructions
and caveats for implementing move operations in C++03.
28 A complaint when developing AA software is that convenient language features such as
default arguments and aggregate initialization become so much more difficult. This complaint
provides significant motivation for language support for allocators described in meredith19.

Page 17 of 59

to create an allocator-parameter overload for the case of no optional
parameters, one optional parameter, and two optional parameters:

 Thing(bsl::string_view name,
 const DataManager& data,
 const allocator_type& allocator = {});
 Thing(bsl::string_view name,
 const DataManager& data,
 int score,
 const allocator_type& allocator = {});
 Thing(bsl::string_view name,
 const DataManager& data,
 int score,
 int rank,
 const allocator_type& allocator = {});

The solution above uses the trailing-allocator convention specifying the allocator
parameter — one of two conventions recognized by containers and AA utilities.
The other option is to use the leading-allocator convention, a C++11 Standard
alternative for specifying the allocator whereby the allocator parameter appears
at the start of a parameter list, preceded by the special marker type
bsl::allocator_arg_t. Using this convention, we need only two overloads for
the preceding constructor:

 Thing(bsl::string_view name,
 const DataManager& data,
 int score = 0,
 int rank = 5);
 Thing(bsl::allocator_arg_t ,
 const allocator_type& allocator,
 bsl::string_view name,
 const DataManager& data,
 int score = 0,
 int rank = 5);

The second constructor is invoked by specifying bsl::allocator_arg as the
first argument and an allocator as the second argument:

Thing myThing(bsl::allocator_arg, myAlloc, "Fred", myData, myScore);

If the constructor is a template with a C++11 variadic parameter list (i.e., a
parameter list where the last deduced parameter contains an ellipsis), the
leading-allocator convention is the only way to add an allocator parameter.29 If
there are no variadic constructors, then whether to provide multiple overloads
or to use the leading-allocator convention is a matter of practicality; if the issue
arises for only one or two constructors, having only one or two default
parameters each, most programmers prefer to keep the trailing-allocator
convention with a trailing defaulted allocator parameter. Because the (C++03-

29 Technically, extracting the last argument from a variadic argument list and determining
whether it is an allocator at compile time should be possible. Getting this right (including
avoiding bad or ambiguous overload resolution) requires a lot of template metaprogramming for
which neither BDE nor the Standard Library currently have support.

Page 18 of 59

compatible) BDE infrastructure has no way to detect which of the two
allocator-passing conventions is used for a specific constructor, a class using
the leading-allocator convention must define the trait
bslmf::UsesAllocatorArgT to be true, even if used in C++11. If we choose
this convention, the preceding declaration for the constructor taking only a
bool would also need to change; the bslmf::UsesAllocatorArgT trait is
defined on a per-class basis, not a per-constructor basis; all constructors
(including the extended copy and move constructors) must use the same
allocator-passing convention.

Implementing a Class That Allocates Memory
Up until now, all memory allocation and deallocation has been managed by the
member variables of our class. If a class needs to allocate memory directly, we
need to understand additional, not necessarily intuitive, rules and apply them
in the destructor, assignment operators, and swap.

Let’s assume that DataManager is a large type and is unused much of the time
in our Thing objects. Allocating space (from the allocator) to hold the
DataManager on an as-needed basis is more sensible than having the
DataManager object be an always-present data member. For illustrative
purposes, the Thing class below uses a raw pointer to hold the address of
allocated memory, although, in practice, a smart pointer (bslma::ManagedPtr
or std::unique_ptr) might be a better choice. For classes that directly
manage memory, whether or not they use allocators or smart pointers, the Rule
of Five members must be defined by the user and must not be compiler
generated:

class Thing {
 // DATA
 bsl::string d_name;
 DataManager *d_data_p;
 int d_score;
 int d_rank;
 // ...
 public:
 // TYPES
 using allocator_type = bsl::allocator<>;

 // CREATORS
 Thing() noexcept;
 explicit Thing(const allocator_type& allocator) noexcept;
 explicit Thing(bool dataMode,
 const allocator_type& allocator = {});
 Thing(const Thing& original);
 Thing(const Thing& original, const allocator_type& allocator);
 Thing(Thing&& original) noexcept;
 Thing(Thing&& original, const allocator_type& allocator);
 ~Thing();

Page 19 of 59

 // MANIPULATORS
 Thing& operator=(const Thing& rhs);
 Thing& operator=(Thing&& rhs);

 void swap(Thing& other);

 // ...
 // ACCESSORS
 // ...
 allocator_type get_allocator() const;
};

The get_allocator method returns the allocator held by the string member. If
we did not already have an AA member, we would need to store the allocator
separately in a new member of type allocator_type.

All memory allocation and deallocation of owned subobjects should go through
the allocator. The bslma::AllocatorUtil::newObject method is the most
effective way to allocate and initialize a single object. If the object being created
is AA, newObject automatically passes the allocator to the object’s constructor,
as shown in the dataMode and extended copy constructors:

Thing::Thing(bool dataMode, const allocator_type& allocator)
 : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5)
{
 if (dataMode) {
 d_data_p =
 bslma::AllocatorUtil::newObject<DataManager>(allocator);
 }
}

Thing::Thing(const Thing& original, const allocator_type& allocator)
 : d_name(original.name(), allocator)
 , d_data_p(nullptr)
 , d_score(original.d_score)
 , d_rank(original.d_rank)
{
 if (original.d_data_p) {
 d_data_p = bslma::AllocatorUtil::newObject<DataManager>(allocator
 *original.d_data_p);
 }
}

We destroy an object and release its footprint memory back to the allocator by
calling bslma::AllocatorUtil::deleteObject:

Thing::~Thing()
{
 Bslma::AllocatorUtil::deleteObject(get_allocator(), d_data_p);
}

The constructors above are exception safe because only one object is being
allocated and constructed. Any memory allocated by d_name is freed by the
bsl::string destructor if any subsequent operation in the Thing constructor
throws an exception. AllocatorUtil::newObject is atomic with respect to

Page 20 of 59

exceptions in that it either succeeds entirely or cleans up after itself if the
memory allocation or DataManager constructor throw an exception.

The BDE 3.x library does not have the AllocatorUtil package. The most
straightforward way to allocate and construct an object is to use the
bslma::Allocator overload of operator new. This version of operator new
takes a reference — not a pointer30 — to a bslma::Allocator object and
allocates memory from that allocator. To destroy and deallocate an object
created in this way, we use the deleteObject method of bslma::Allocator
(or, when the most-derived type of the object is known statically,
deleteObjectRaw). BDE 3.x versions of the dataMode and extended copy
constructors and destructor would look different:

Thing::Thing(bool dataMode, const allocator_type& allocator)
 : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5)
{
 if (dataMode) {
 d_data_p = new(*allocator.mechanism())
 DataManager(bslma::AllocatorUtil::adapt(allocator));
 }
}

Thing::Thing(const Thing& original, const allocator_type& allocator)
 : d_name(original.name(), allocator)
 , d_data_p(nullptr)
 , d_score(original.d_score)
 , d_rank(original.d_rank)
{
 if (original.d_data_p) {
 d_data_p = new(*allocator.mechanism())
 DataManager(*original.d_data_p,
 bslma::AllocatorUtil::adapt(allocator));
 }
}

Thing::~Thing()
{
 get_allocator().mechanism()->deleteObject(d_data_p);
}

Note that the constructors pass the allocator not only to operator new for
allocation, but also to the DataManager constructor for use within the
allocated object. The constructors are exception safe because operator new is
atomic with respect to exceptions, just as newObject is. Unlike newObject,
however, operator new does not automatically determine whether
DataObject is AA nor which AA model or allocator-passing convention it uses.
In generic BDE 3.x code, therefore, the construction of a member like

30 Warning: Passing a pointer to an allocator would still compile but with the undesirable
runtime semantics of corrupting the allocator.

Page 21 of 59

d_data_p would need to be separate from its allocation, with a proctor
definition in between for exception safety (see proctor discussion, below):

 d_data_p = allocator.mechanism()->sizeof(DataManager);
 bslma::DeallocatorProctor<bslma::Allocator>
 proctor(d_data_p, allocator.mechanism());
 bslma::ConstructionUtil::construct(d_data_p,
 allocator.mechanism());

Let’s say, however, that DataManager has a method, idStr, that returns a
unique string for each DataManager object, and let’s say that we want to
append that string to the d_name field. The straightforward modification to the
constructor is not exception safe:

Thing::Thing(bool dataMode, const allocator_type& allocator)
 : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5)
{
 // NOT YET SAFE IN THE PRESENCE OF EXCEPTIONS (FIX TO FOLLOW)!
 if (dataMode) {
 d_data_p =
 bslma::AllocatorUtil::newObject<DataManager>(allocator);
 d_name += ':'; // might throw
 d_name += d_data_p->idStr(); // might throw
 }
}

If appending the data ID to the name throws an exception, the object created
by newObject will become orphaned, resulting in a memory leak. To be
exception safe, we need a way to reverse the effect of a successful call to
newObject if a function subsequently fails (e.g., because an exception was
thrown). The best way to achieve this exception safety is to use an RAII31 object
whose destructor will automatically rewind a specified step if the current
function returns prematurely. The BDE library refers to such an object by the
unconventional term proctor. Every proctor type has a constructor that gives it
control over some resource, a release method that releases control over the
resource without destroying it, and a destructor that destroys any resource(s)
still under the proctor’s control. In the Thing constructor example, we can use
a bslma::DeleteObjectProctor to destroy and deallocate the DataManager
object if an exception occurs during the string append operations32:

31 RAII is an initialism for Resource Acquisition Is Initialization, a common C++ idiom whereby
an object acquires a resource (in this case, memory) upon construction and automatically
relinquishes it upon destruction.
32 The C++ Standard’s unique_ptr (iso20, section 20.11.1, “unique.ptr,” pp. 630–639) can be
used as a proctor but requires a special deleter that is not yet standard (see köppe20).
Additionally, bdlb::ScopeExit in BDE and the scope_exit and scope_fail templates
described in sommerlad19 can take the place of proctors but are not yet standardized.

Page 22 of 59

Thing::Thing(bool dataMode, const allocator_type& allocator)
 : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5)
{
 if (dataMode) {
 d_data_p =
 bslma::AllocatorUtil::newObject<DataManager>(allocator);
 bslma::DeleteObjectProctor<allocator_type, DataManager>
 delProct(get_allocator(), d_data_p);
 d_name += ':'; // might throw
 d_name += d_data_p->idStr(); // might throw
 delProct.release(); // no more ops that might throw
 }
}

In the revised constructor above, a DeleteObjectProctor object is created
immediately after the DataManager object is returned from
AllocatorUtil::newObject and takes responsibility for destroying and
deallocating it in the event of an exception. Once all potentially throwing
operations have completed successfully, the release method is called to
deactivate the proctor.

BDE 3.x does not have DeleteObjectProctor but does have a similar
RawDeleterProctor that assumes the legacy-AA model. Compared to
DeleteObjectProctor, the ALLOCATOR and TYPE parameters are reversed, as
are the constructor arguments. The ALLOCATOR parameter is a reference (not a
pointer) type, typically bslma::Allocator or a pool type, whereas the
allocator constructor argument is a pointer. When using bsl::allocator,
we must retrieve that pointer by means of the mechanism accessor:

 bslma::RawDeleterProctor<DataManager, bslma::Allocator>
 delProct(d_data_p, get_allocator().mechanism());

The BDE 4.0 library provides three new proctor class templates.

Proctor template Reverses this operation

bslma::DeleteObjectProctor bslma::AllocatorUtil::newObject

bslma::DeallocateObjectProctor bslma::AllocatorUtil::allocateObject

bslma::DeallocateBytesProctor bslma::AllocatorUtil::allocateBytes

Note that each new proctor’s name and constructor parameter list corresponds
to the operation it performs on premature destruction; for example,
bslma::DeleteObjectProctor’s constructor takes the same arguments as
bslma::AllocatorUtil::deleteObject. At the end of this section, however,
we’ll see a way to use the Thing class as its own proctor.

As with any class that allocates memory, the copy-assignment operator must
take care not to overwrite the d_data_p pointer before deallocating the memory

Page 23 of 59

to which it points nor to leave the assigned-to object in an invalid state if an
exception is thrown:

Thing& operator=(const Thing& rhs)
{
 d_name = rhs.d_name;
 if (d_data_p && rhs.d_data_p) { // Assign data object.
 *d_data_p = *rhs.d_data_p;
 }
 else if (d_data_p) { // Delete data object.
 bslma::AllocatorUtil::deleteObject(get_allocator(), d_data_p);
 d_data_p = nullptr;
 }
 else if (rhs.d_data_p) { // Allocate and copy data object.
 d_data_p = bslma::AllocatorUtil::newObject<DataManager>(
 get_allocator(), *rhs.d_data_p);
 }
 d_score = rhs.d_score;
 d_rank = rhs.d_rank;
 return *this;
}

Move operations (move construction, move assignment, and swap) require
special consideration. Ideally, a move operation on an allocating type requires
moving only the pointers to allocated memory, without copying the contents of
allocated memory. Let’s encapsulate this ideal in a private fastMoveFrom
member function that will be used to implement the public move operations:

class Thing {
 // ...
 // PRIVATE MANIPULATORS
 void fastMoveFrom(Thing& other) noexcept;
 // Move the specified 'other' Thing into '*this'.
 // The behavior is undefined unless 'other' and '*this'
 // are distinct objects that have the same allocator.
 //...
};

void
Thing::fastMoveFrom(Thing& other) noexcept
{
 BSLS_ASSERT_SAFE(get_allocator() == other.get_allocator());

 bslma::AllocatorUtil::deleteObject(get_allocator(), d_data_p);

 d_name = bsl::move(other.d_name);
 d_data_p = other.d_data_p; other.d_data_p = nullptr; // pointer move33
 d_score = other.d_score;
 d_rank = other.d_rank;
}

33 Using the C++14 and later Standard Library exchange template, the pointer move can be
expressed more simply as d_data_p = std::exchange(other.d_data_p, nullptr);.

Page 24 of 59

When the caller does not explicitly provide an allocator, the (nonextended)
move constructor should use the moved-from object’s allocator for the newly
constructed object. This behavior is unlike that of all other constructors, which
use the default allocator when the caller does not provide one.34 Thus, while we
can express the allocator-extended version of most constructors using an
optional allocator parameter, as we did for the copy constructor, a defaulted
parameter would produce an incorrect result for the move constructor:

 // BAD IDEA
 Thing(Thing&& original, const allocator_type& allocator = {});

Another important difference between the regular (nonextended) move
constructor and the extended move constructor is that the former is usually
declared noexcept, whereas the latter might allocate memory so it’s not
necessarily noexcept.

The nonextended move constructor can simply invoke the extended default-
constructor and delegate to fastMoveFrom:

Thing::Thing(Thing&& original) noexcept
 : Thing(original.get_allocator()) // C++11 delegating constructor
//: d_name(original.get_allocator()), d_data_p(nullptr) // C++03 version
{
 fastMoveFrom(original);
}

The extended move constructor can be invoked with an allocator different from
that of the moved-from object. In that case, moving the pointer is problematic
because the moved-to object’s destructor will attempt to deallocate the memory
from the wrong allocator. The correct behavior, therefore, is performing a fast
move only when the allocators are the same and otherwise falling back to a
copy35:

Thing::Thing(Thing&& original, const allocator_type& allocator)
 : Thing(allocator) // C++11 delegating constructor
//: d_name(allocator), d_data_p(nullptr) // C++03 version
{
 // '*this' is in a valid (empty) state.
 if (allocator == original.get_allocator()) {
 fastMoveFrom(original);
 }
 else {
 operator=(original); // copy assignment
 }
}

34 In theory, the result of a nonextended move constructor should be the same as that of
constructing the moved-from object directly at the moved-to location.
35 The BDE rule is that if the allocators match, the extended move constructor must behave
like the regular move constructor, and if the allocators do not match, the extended move
constructor must behave like the extended copy constructor. See “Expected Properties of Types
Declaring the bslma::UsesBslmaAllocator Trait” in bloomberg.

Page 25 of 59

The same issue affects the move-assignment operator. The allocator used by
the moved-to object does not change during move assignment and may differ
from the allocator used by the moved-from object. As in the case of the
extended move constructor, we must test for the same allocator and move or
copy as appropriate:

Thing& Thing::operator=(Thing&& rhs)
{
 if (get_allocator() != rhs.get_allocator()) {
 operator=(rhs); // copy assignment
 else if (this != &rhs) {
 fastMoveFrom(rhs);
 }

 return *this;
}

The third move operation is swap. Following a recent BDE convention, an AA
class should provide a public member function swap that never throws an
exception and may provide an ADL-discoverable free function swap that might
throw:

class Thing {
 // ...
 public:
 // ...
 void swap(Thing& other);
 // ...
};

void swap(Thing& a, Thing& b);

If the arguments use the same allocator, then either swap operation is
performed in constant time (no allocations or deallocations) and never throws
an exception. Swapping the allocators for the purpose of guaranteeing the O(1),
nonthrowing behavior may be tempting, but allowing the allocator to change
during an object’s lifetime violates important invariants, especially within
containers.36 For implementing swap when the objects being swapped have
different allocators, we have three options, each of which is slower and uses
more temporary memory than the one before.

1) Require allocator equality as a precondition (typically verified with an
assertion). With this implementation, swap can execute in constant
time.37

36 The bsl-AA interface is designed so that all the elements in a container of Thing will use the
same allocator, thus ensuring locality of reference and consistent allocator lifetime throughout
the container. It is critical, therefore, that nothing outside the container can change the
allocator of a container element; e.g., swap(v[0],x) must not swap the allocators of v[0]
and x.
37 Some algorithms cannot meet their complexity guarantees unless elements can be swapped
in constant time. The PMR containers in the Standard Library have this precondition on swap.

Page 26 of 59

2) Perform the traditional three-move swap, where two of the moves will
degenerate to copies that allocate memory and might throw. This option
is the equivalent of a fully qualified call to std::swap.

3) Provide the strong exception guarantee, whereby each object is carefully
copied using the other object’s allocator before attempting any moves.

All three options are reasonable choices, but our member swap implementation
is limited to option 1 due to the BDE rule that the member swap must not
throw. By using the regular move constructor and fastMoveFrom, we need not
concern ourselves with the allocator at all, except (optionally) to assert that
they are equal:

void Thing::swap(Thing& other) noexcept {
 BSLS_ASSERT_SAFE(get_allocator() == other.get_allocator());
 // All three of the following calls are 'noexcept'.
 Thing temp1(bsl::move(*this));
 this->fastMoveFrom(other);
 other.fastMoveFrom(temp1);
}

For the swap free function, all three implementation options are possible, but
we’ll implement the third one for illustrative purposes. The strong exception
guarantee means that the original objects are left unchanged if the swap exits
with an exception:

void swap(Thing& a, Thing& b)
{
 if (a.get_allocator() == b.get_allocator()) {
 a.swap(b);
 }
 else {
 // Creating temporaries might allocate and copy, which might throw
 Thing temp1(bsl::move(a), b.get_allocator());
 Thing temp2(bsl::move(b), a.get_allocator());

 a.swap(temp2); // no allocation, copy, or throw
 b.swap(temp1); // no allocation, copy, or throw
 }
}

Note that if the objects being swapped have the same allocator, which is always
the case when the objects are elements of the same container, then the swap
itself requires no allocations and will not throw an exception, regardless of
whether we call member swap or free-function swap. We can use this fact to
simplify the implementations of both the copy and move assignment operators,
in the process bestowing on them the strong exception guarantee:

Thing& Thing::operator=(const Thing& rhs) // simplified implementation
{
 Thing(rhs, get_allocator()).swap(*this);
 return *this;
}

Page 27 of 59

Thing& Thing::operator=(Thing&& rhs)
{
 Thing(bsl::move(rhs), get_allocator()).swap(*this);
 return *this;
}

In these rewritten assignment operators, the swap method is invoked only if the
extended copy or move constructor succeeds without throwing an exception.
The constructed temporary object has the same allocator as *this, so the
subsequent swap is guaranteed to succeed in constant time. If the extended
copy or move constructor fails, then *this is not modified. Note that these
simplified assignment operators will sometimes result in an additional
allocation and deallocation relative to the previous implementations.

Taking advantage of a swap operation that is guaranteed not to throw under
certain conditions, we can eliminate the proctor in some or all of the Thing
constructors:

Thing::Thing(bool dataMode, const allocator_type& allocator)
 : d_name(allocator), d_data_p(nullptr), d_score(0), d_rank(5)
{
 if (dataMode) {
 Thing temp(allocator); // will clean up on exception
 temp.d_data_p =
 bslma::AllocatorUtil::newObject<DataManager>(allocator);
 temp.d_name += ':'; // might throw
 temp.d_name += temp.d_data_p->idStr(); // might throw
 this->swap(temp) // no more ops that might throw
 }
}

This version of the constructor depends on temp’s destructor to clean up the
data manager if an exception is thrown subsequent to its creation. Effectively,
Thing is using itself as a proctor with swap being used instead of release. An
important caveat with this technique is that we often assert that class
invariants are preserved on entry to a destructor. When using this class-as-its-
own-proctor technique, it is critical that an exception cannot be thrown while
the temp object is in an invalid state.

Implementing an AA Class Template
Until a class template is instantiated, we cannot know whether a type related
to a template parameter (known in the C++ Standard as a dependent type) is
AA. Subobjects of a dependent type must be constructed in such a way that an
allocator is passed to the constructor if and only if the dependent type is AA.
An instantiation of a class template might not be AA unless at least one
dependent type is AA, posing the additional challenge of writing an adaptable
interface.

Page 28 of 59

For this example, we’ll begin with our Thing attribute class, modified such
that, instead of a DataManager member, it holds an object of a type specified
by the user as a template parameter:

namespace BloombergLP {
namespace xyzabc {

template <class TYPE>
class Thing {
 // DATA
 bsl::string d_name;
 TYPE d_data;
 int d_score;
 int d_rank;

 public:
 // TYPES
 using allocator_type = bsl::allocator<>;

 // CREATORS
 Thing();
 explicit Thing(const allocator_type& allocator);
 Thing(bsl::string_view name,
 const TYPE& data,
 const allocator_type& allocator = {});
 ...

Our Thing class template is already AA, so the type aliases, traits, and default
constructor prototype need not change. The problem comes in the
implementation of the allocator-extended constructors:

template <class TYPE>
Thing::Thing(bsl::string_view name,
 const TYPE& data,
 const allocator_type& allocator)
 : d_name(name, bslma::AllocatorUtil::adapt(allocator))
 , d_data(data, ?allocator?)
 , d_score(0)
 , d_rank(5)
{
}

If TYPE is not AA, then the initializer for d_data should be simply
d_data(data), but if TYPE is AA, then the initializer should be d_data(data,
bslma::AllocatorUtil::adapt(allocator)). We can achieve this
conditionally AA initialization by calling
bslma::ConstructionUtil::make<TYPE>(allocator, data) and initializing
d_data with the return value of this call:

template <class TYPE>
Thing::Thing(bsl::string_view name,
 const TYPE& data,
 const allocator_type& allocator)
 : d_name(name, bslma::AllocatorUtil::adapt(allocator))
 , d_data(bslma::ConstructionUtil:make<TYPE>(allocator, data))

Page 29 of 59

 , d_score(0)
 , d_rank(5)
{
}

All the C++11 compilers in use at Bloomberg will perform the above
initialization without making extra copies. Any number of constructor
arguments can be supplied after the allocator. If TYPE is not AA, then the
allocator is ignored; if it is AA using the trailing allocator convention, then
ConstructionUtil::make will append allocator to the argument list; and if
it is AA using the leading allocator convention, then it will prepend
bsl::allocator_arg and allocator to the argument list. Furthermore, if
TYPE is legacy-AA, ConstructionUtil::make will call
allocator.mechanism() to retrieve a bslma::Allocator pointer to pass to
the TYPE constructor, obviating a call to AllocatorUtil::adapt.

Unfortunately, using ConstructionUtil::make does have some limitations.

• ConstructionUtil::make is unavailable for the Sun and IBM compilers
because they do not reliably prevent extra copy operations, so it is
probably inappropriate for any code that might be compiled on those
platforms, including most code supporting C++03.

• In language versions prior to C+17, TYPE is required to be move-
constructible; otherwise, the instantiation of ConstructionUtil::make
will yield a compilation error.

Most types are move-constructible, including virtually all types that are copy-
constructible (because a copy constructor is a perfectly valid move
constructor). Nonmovable types are typically mechanisms such as mutexes, for
which the object’s location in memory is as important as its state. If you are
content limiting TYPE to movable types, ConstructionUtil::make is the
cleanest way to initialize a member of template-parameter type.

When ConstructionUtil::make does not work, we can achieve conditionally
AA initialization by using the bslalg::ConstructorProxy<TYPE>, which
wraps an object of TYPE and presents a consistent AA constructor interface
regardless of whether TYPE is AA and regardless of whether it uses the leading
or trailing allocator convention:

template <class TYPE>
class Thing {
 bsl::string d_name;
 bslalg::ConstructorProxy<TYPE> d_dataProxy;
 int d_score;
 int d_rank;

The ConstructorProxy constructor takes 0 to 14 arguments of arbitrary type
always followed by an allocator, i.e., it follows the trailing-allocator convention,
but note that the allocator is not optional. As for ConstructionUtil::make,
nonallocator arguments are passed to the proxied object’s constructor and the

Page 30 of 59

allocator is either ignored (for non-AA types) or passed to the object’s
constructor (for AA types). Thus, the initializer for Thing’s constructor now
looks somewhat different:

template <class TYPE>
Thing::Thing(bsl::string_view name,
 const TYPE& data,
 const allocator_type& allocator)
 : d_name(name, bslma::AllocatorUtil::adapt(allocator))
 , d_dataProxy(data, allocator)
 , d_score(0)
 , d_rank(5)
{
}

Note that we don’t need to use bslma::AllocatorUtil::adapt for the
d_dataProxy initializer because the allocator is guaranteed to be
bsl::allocator or bsl::polymorphic_allocator, either of which can be
initialized from the allocator argument.

In BDE 3.x, the allocator parameter to ConstructorProxy has type
bslma::Allocator*, so using bslma::AllocatorUtil::adapt is required:

 , d_dataProxy(data, bslma::AllocatorUtil::adapt(allocator))

In addition to the constructor changes, we must replace all uses of d_data with
d_dataProxy.object() throughout Thing’s implementation:

template <class TYPE>
TYPE& Thing<TYPE>::data() { return d_dataProxy.object(); }

The Thing template described so far is always AA because it contains a
bsl::string, which is known to be AA. If we were to remove the string, then
the situation would be different:

template <class TYPE>
class Thing {
 bsl::string d_name;
 TYPE d_data;
 int d_score;
 int d_rank;
 // …

If TYPE is AA, then Thing<TYPE> should be AA; otherwise, Thing<TYPE> need
not be AA. The easiest way to handle this situation is to artificially make Thing
AA in all circumstances by adding an allocator member:

template <class TYPE>
class Thing {
 bsl::allocator<> d_allocator;
 TYPE d_data;
 int d_score;
 int d_rank;
 // ...

Page 31 of 59

The allocator, though unused when TYPE is not AA, always takes up space in
the object footprint; this wasted space is often an acceptable cost for the
simplicity of this approach.

If the extra pointer-sized space consumption is an issue or if having the
interface be pure AA or pure non-AA is important, then some refactoring and
metaprogramming will be required; let’s consider one such approach. We begin
by declaring our Thing template with an extra Boolean parameter that defaults
to true if TYPE is AA and false otherwise38:

template <class TYPE, bool USES_ALLOC =
 BloombergLP::bslma::UsesBslmaAllocator<TYPE>::value>
class Thing;

The partial specialization for which USES_ALLOC is true supplies the entire AA
interface:

template <class TYPE>
class Thing<TYPE, true> {
 TYPE d_data;
 int d_score;
 int d_rank;

 public:
 // PUBLIC TYPES
 using allocator_type = bsl::allocator<>;

 // CREATORS
 Thing();
 explicit Thing(const allocator_type& allocator);
 explicit Thing(const TYPE& data,
 const allocator_type& allocator = {});
 // ..
 const TYPE& data() const;
 allocator_type get_allocator() const;
};

By supplying an explicit true value for USES_ALLOCATOR, this partial
specialization can also be instantiated for non-AA types, and we will shortly
exploit this feature.

The allocator-extended constructors in this specialization initialize
d_dataProxy using the specified allocator:

template <class TYPE>
Thing<TYPE, true>::Thing(const TYPE& data,
 const allocator_type& allocator)
 , d_data(bslma::ConstructionUtil:make<TYPE>(allocator, data))
 , d_score(0)
 , d_rank(5)
{

38 This metaprogramming technique is difficult to use for variadic class templates; indirection
through inheritance or alias templates is required in this case.

Page 32 of 59

}

Although the TYPE is known to be AA, we still use ConstructionUtil:make
because it automatically handles potential AA model and constructor-
convention mismatches for us. We could similarly use ConstructorProxy to
achieve the same effect.

The Thing::get_allocator method retrieves the allocator from the object
stored within the d_data member:

template <class TYPE>
allocator_type Thing<TYPE, true>::get_allocator() const
{
 using bslma::AATypeUtil;
 return AATypeUtil::getAllocatorFromSubobject<allocator_type>(d_data);
}

We create the partial specialization where USES_ALLOC is false to inherit from
the other (AA) specialization, hard-coding USES_ALLOC to true in the base class.
The new specialization defines only the non-AA constructors and disables
allocator_type (by redefining it to void) and get_allocator (by redefining it
as private):

template <class TYPE>
class Thing<TYPE, false> : Thing<TYPE, true> {

 // PRIVATE TYPES
 using Base = Thing<TYPE, true>;

 // NOT IMPLEMENTED
 void get_allocator() const;

 public:
 // TYPES
 using allocator_type = void;

 // CREATORS
 Thing() : Base() { }
 explicit Thing(const TYPE& data) : Base(data) { }
 ...
};

This layering of the non-AA specialization on top of the AA specialization works
because the (default-constructed) allocator in the AA implementation is
discarded by bslma::ConstructionUtil::make. The base-class
get_allocator() method is never instantiated for non-AA TYPEs, so no
compilation errors result from its otherwise-invalid use of
getAllocatorFromSubobject.

Unfortunately, duplicate declarations of nonextended constructors are present
in the two partial specializations of our class template, so any interface
maintenance must be done in both places. Implementation changes, however,
affect only the AA specialization, mitigating the maintenance issue caused by
this duplication.

Page 33 of 59

Several other metaprogramming approaches exist for implementing a
conditionally AA template. Work is in progress on a set of tools to make the
task simpler, especially when more than one dependent type is involved.

Implementing an AA Container
The archetypal AA type is a container class (or container class template). The
new challenge when implementing a container is insertion and removal of
elements (each of which might be AA) outside of the constructors and
destructor, especially in the presence of exceptions.

Let’s look at a simplified implementation of MyList, an AA doubly linked list
container template:

template <class TYPE>
struct MyList_Node;

template <class TYPE>
class MyList {

 // PRIVATE TYPES
 using Node = MyList_Node<TYPE>;

 bsl::allocator<> d_allocator;
 Node *d_head_p, *d_tail_p;

 public:
 // TYPES
 using allocator_type = bsl::allocator<>;

 // CREATORS
 MyList();
 explicit MyList(const allocator_type& allocator);
 MyList(const MyList& original, const allocator_type& allocator = {});
 MyList(MyList&& original);
 MyList(MyList&& original, const allocator_type& allocator);
 ~MyList();

 // MANIPULATORS
 MyList& operator=(const MyList& rhs);
 MyList& operator=(MyList&& rhs);
 template <class... ARGS>
 void emplace_back(ARGS&&... args);
 void pop_back();
 TYPE& front();
 TYPE& back();

 // ACCESSORS
 const TYPE& front() const;
 const TYPE& back() const;
 allocator_type get_allocator() const { return d_allocator; }
};

Page 34 of 59

// FREE FUNCTIONS
bool operator==(const MyList& a, const MyList& b);
bool operator!=(const MyList& a, const MyList& b);

For brevity, the example omits iterators and other operations that a reusable
list class would normally supply. We’ll focus on the emplace_back and
pop_back member functions, which respectively insert and remove elements at
the end of the list. The implementation of the constructors, destructor,
assignment operators, accessors, and equality comparison operators present
no allocator-related challenges beyond those discussed in previous sections.
For example, the destructor can be implemented using pop_back:

template <class TYPE>
MyList<TYPE>::~MyList()
{
 while (d_head_p) {
 pop_back();
 }
}

The implementation of emplace_back involves three main steps.

1) Allocate a new MyList_Node object.
2) Construct the new element within the node.
3) Link the new node onto the list.

The MyList_Node class template holds an object that might or might not be
AA. Because this class template is private to the component, however, we can
take some shortcuts on the interface. Specifically, a node never needs to hold
its own allocator, so we omit the get_allocator member as well as the copy
and move constructors and assignment operators. The constructor for
MyList_Node must conditionally pass an allocator to TYPE’s constructor, which
we accomplish using ConstructionUtil::make:

template <class TYPE>
struct MyList_Node {
 using allocator_type = allocator_type<>;

 TYPE d_value;
 Node *d_prev_p;
 Node *d_next_p;

 template <class... ARGS>
 MyList_Node(const allocator_type& allocator, ARGS&&... ctorArgs)
 : d_value(bslma::ConstructionUtil::make<TYPE>(allocator,
 std::forward<ARGS>(args)...))
 { }
};

We create a new node (steps 1 and 2 in our list above) using
bslma::AllocatorUtil::newObject:

Page 35 of 59

template <class TYPE>
template <class... ARGS>
void MyList<TYPE>::emplace_back(ARGS&&... args)
{
 Node *node_p = bslma::AllocatorUtil::newObject<Node>(get_allocator(),
 std::forward<ARGS>(args)...);
 // No potentially throwing operations after this point.
 node_p->d_prev_p = d_tail_p;
 node_p->d_next_p = nullptr;
 d_tail_p = node_p;
 if (!d_head_p) {
 d_head_p = node_p;
 }
}

Note that all potentially throwing operations are bundled into the single call to
newObject; as tempting as managing node_p with a proctor seems, doing so is
unnecessary in this case.

Finally, let’s look at the pop_back member function, which removes the last
element from our list. The steps in the implementation are basically the reverse
of emplace_back. First, we unlink the last node from the list, and then we call
bslma::AllocatorUtil::deleteObject to destroy the node (including its
TYPE member) and release its storage back to the allocator:

template <class TYPE>
void MyList<TYPE>::pop_back()
{
 MyList_Node<TYPE> *node_p = d_tail_p;
 if (node_p) {
 d_tail_p = node_p.d_prev_p;
 if (d_tail_p) {
 d_tail_p->d_next_p = nullptr;
 }
 else {
 d_head_p = nullptr;
 }

 bslma::AllocatorUtil::deleteObject(get_allocator(), node_p);
 }
}

Using a proctor is unnecessary for this implementation because neither
destruction nor deallocation should ever throw an exception, and even if they
did, no method exists to unwind these operations.

Although combining memory allocation and element construction into one step
is practical for node-based containers like MyList, separating allocation from
construction is required for most array-based containers such as vector.
Instead of creating nodes containing one element each, array-based containers
allocate a block of memory suitable for holding a variable-length, contiguous
array of elements and then construct a subset of those elements as a separate
step during insertion. A partial implementation of a vector-like class template,
MyVector, might hold an allocator, pointers to the start and end of the data

Page 36 of 59

elements, and a capacity indicating how many data elements the current block
can hold:

template <class TYPE>
class MyVector {
 // DATA
 bsl::allocator<> d_allocator;
 TYPE *d_data;
 TYPE *d_dataEnd;
 std::size_t d_capacity;

 // PRIVATE MANIPULATORS
 void reallocate(std::size_t newCapacity);
 // Change the capacity of the vector to the specified
 // 'newCapacity' by reallocating the data array and moving all
 // existing elements to the new array.

 // ...
};

Operations that construct multiple elements, such as the reallocation
operation, could use AllocatorUtil::allocateObject to allocate the raw
memory and ConstructionUtil::construct to construct each element
within the allocated storage. If an exception is thrown after some elements have
been constructed, those elements must be destroyed. The
bslma::AutoDestructor proctor is used to manage all currently constructed
elements and automatically destroy them in the case of an exceptional exit.
Note that this example uses AutoDestructor to manage elements in forward
order (incrementing the proctor as new elements are constructed at the end of
the array), but it can also be used in reverse order (decrementing the proctor as
new elements are constructed at the front)39:

template <class TYPE>
void MyVector::reallocate(std::size_t newCapacity)
{
 TYPE *p = bslma::AllocatorUtil::allocateObject<TYPE>(d_allocator,
 newCapacity);

 bslma::DeallocateObjectProctor<allocator_type, TYPE>
 dataProctor(d_allocator, p, newCapacity);
 bslma::AutoDestructor dtorProctor(p);
 for (TYPE *e = d_data; e != d_dataEnd; ++e, ++p) {
 bslma::ConstructionUtil::construct(p, d_allocator, bsl::move(*e));
 ++dataProctor; // Manage the newly constructed element.
 }
 for (TYPE *e = d_data; e != d_dataEnd; ++e) {
 bslma::DestructionUtil::destroy(e);
 }
 bslma::AllocatorUtil::deallocateObject(d_allocator, d_data);

39 See bloombergc.

Page 37 of 59

 dtorProctor.release(); // Commit constructions.
 d_data = dataProctor.release(); // Commit allocation.
 d_dataEnd = p;
 d_capacity = newCapacity;
}

Pitfall: Inheriting from a bsl-AA Class
Bloomberg code has a number of classes that inherit from bsl::string,
bsl::vector, and other bsl-AA classes.40 The derived class is often not AA:

class StringLike : public bsl::string {
 // String-like class that inherits from 'string' but is distinct for
 // overload-resolution purposes.
 public:
 StringLike() {}
 StringLike(const char *s) : bsl::string(s) {} // IMPLICIT
 // ...
};

Unfortunately, StringLike inherits the allocator_type member from
bsl::string causing bslma::UsesBslmaAllocator<StringLike> to evaluate
true, even though StringLike provides none of the allocator-extended
constructors needed for it to be treated as an AA type. Thus, inserting into an
AA container such as bsl::vector<StringLike> will result in compilation
errors as the vector code tries to pass an allocator to each StringLike
element.

A similar problem occurs when a legacy-AA class inherits from a bsl-AA class:
class IntCollection : public std::vector<int> {
 // Vector-like class that inherits from 'vector' and caries some
 // extra data. This is a legacy-AA class.

 std::string d_name;

 public:
 BSLMF_NESTED_TRAIT_DECLARATION(IntCollection, UsesBslmaAllocator);

 explicit IntCollection(const std::string& name,
 bslma::Allocator *basicAllocator = 0);
 IntCollection(const IntCollection& original,
 bslma::Allocator *basicAllocator = 0);

 // ...
 bslma::Allocator *allocator() const;
};

Again, allocator_type is inherited, so while IntCollection is AA, a
container like bsl::vector<IntCollection> will treat it as bsl-AA and

40 Sometimes inheriting from a class that was not intended for inheritance has legitimate
engineering reasons, but doing so is generally a dubious practice.

Page 38 of 59

produce a compilation error when it attempts to pass a bsl::allocator to the
IntCollection constructor.

Inheriting from a library class is always a dubious proposition with potential
unintended consequences, so the first and best approach is often to change the
class to use composition instead of inheritance. A second and complementary
approach is to make the derived class fully bsl-AA (often not difficult if its
constructors simply forward to the AA member or base class); see Appendix A
for guidance on converting a legacy-AA class to bsl-AA.

The simplest fix that applies to both problematic uses of inheritance is to
neutralize the inherited allocator_type by redefining it to void:

 using allocator_type = void; // Neutralize inherited type

When fixing a class that suffers from one of these inheritance-related problems,
applying the void allocator type fix in the short term and one or both of the
other fixes later on is safe.

Testing AA Components
If we hope to produce quality software, then instrumenting a class to be AA
must be paired with testing the AA aspects of that class41 and verifying seven
qualities.

1) All memory belonging to the object is allocated from its allocator and not
from global operator new or the default allocator.

2) The object returns all owned memory to the allocator on destruction.
3) The class object retains a copy of the specified allocator on construction

(or the default allocator if one isn’t specified).
4) The allocator doesn’t change, for either operand, during copy or move

assignment.
5) AA elements in a container use the same allocator as the container

throughout the container’s lifetime.
6) Memory is not leaked and objects are not corrupted if an exception

occurs while allocating memory or while constructing or modifying an AA
subobject.

7) (Optional white-box test) The object allocates memory only when
expected and in the expected quantities (number of blocks, bytes, and/or
allocator calls).

The bslma_testallocator and bslma_testallocatormonitor components
facilitate achieving these test goals.42 The bslma::TestAllocator class is an
allocator that tracks blocks and bytes allocated, deallocated, and currently in

41 Some of the techniques described in this section are demonstrated in fehér19a, starting at
time 18:08.
42 Documentation is available in bloombergd and bloomberge.

Page 39 of 59

use. It detects attempts to deallocate the same block twice, to deallocate a
block from a different allocator than was used to allocate it, and to destroy the
allocator while blocks are still outstanding (i.e., leaked). A
bslma::TestAllocator can also be set to throw an exception after a specific
number of allocation attempts for testing exception safety in the AA type. The
bslma::TestAllocatorMonitor class captures the state of a specific
bslma::TestAllocator and provides concise Boolean queries for whether
allocation has increased or decreased (and by how much) or stayed the same
since it was created or last reset.

Let’s look at a simple example using bslma::TestAllocator and
bslma::TestAllocatorMonitor to verify correct allocator-related behavior in
our primitive linked-list container. Note that we use the common idiom of
passing the address of a bslma::Allocator-derived class
(bslma::TestAllocator) to the MyList constructor, taking advantage of the
implicit conversion from bslma::Allocator* to bsl::allocator:

{
 // If veryVeryVeryVerbose is true, 'ta' prints data on every operation
 bslma::TestAllocator ta("list alloc", veryVeryVeryVerbose);
 // ... Other code that uses 'ta' could go here. ...
 bslma::TestAllocatorMonitor tam(&ta);

 MyList<int> theList(&ta);
 ASSERT(&ta == theList.get_allocator());
 ASSERT(tam.isTotalSame()); // no 'ta' allocations in the constructor

 theList.emplace_back(3);
 ASSERT(1 == tam.numBlocksInUseChange()); // exactly one block used

 theList.pop_back();
 ASSERT(tam.isInUseSame()); // back to original memory use
 // ... Other code that uses 'ta' could go here. ...
} // 'ta' destructor checks for memory leaks.

A class that has been converted from non-AA to AA might erroneously have
residual calls to operator new that bypass the allocator. Even more common is
forgetting to pass the allocator to a subobject’s constructor, resulting in the
subobject erroneously using the default allocator. We can detect improper use
of operator new by replacing global operator new and operator new[] with
ones that direct all allocation requests to a specific test allocator (which gets its
memory from malloc, not operator new, thus avoiding recursion)43:

43 In modern C++, operator new has no exception specification and operator delete is
marked noexcept; in C++03, they are marked throw(std::bad_alloc) and throw(),
respectively. Thus, conditional compilation on BSLS_COMPILERFEATURES_SUPPORT_NOEXCEPT is
needed to support both. Later C++ versions also have aligned overloads of operator new,
requiring even more overloads in the most thorough tests.

Page 40 of 59

namespace {
bslma::TestAllocator& opNewAllocator() {
 static bslma::TestAllocator ret;
 return ret;
}
}
void *operator new(std::size_t size)
 { return opNewAllocator().allocate(size); }
void operator delete(void *block_p) noexcept
 { return opNewAllocator().deallocate(block_p); }

We can detect improper use of the default allocator by setting it, either at the
top of main or in a specific test case, to a designated test allocator using
bslma::DefaultAllocatorGuard. When the guard goes out of scope, the
default allocator is automatically restored to its previous value:

bslma::TestAllocator defaultTestAllocator;
bslma::DefaultAllocatorGuard daGuard(&defaultTestAllocator);

Using a bslma::TestAllocatorMonitor, we can verify that operations on the
type being tested result in no net allocations from either opNewAllocator or
defaultTestAllocator, though transient allocations for local variables, if any,
are expected. We’ll improve our previous test by adding these additional checks
for incorrect use of operator new or the default allocator. We expect no
transient allocations from the default allocator or operator new, so we use the
isTotalSame method instead of isInUseSame to verify that no allocations at
all were done from those sources:

bslma::TestAllocator da("default alloc", veryVeryVeryVerbose);
{
 bslma::DefaultAllocatorGuard daGuard(&da);
 bslma::TestAllocatorMonitor onm(&opNewAllocator());
 bslma::TestAllocatorMonitor dam(&da);

 bslma::TestAllocator ta("list alloc", veryVeryVeryVerbose);
 bslma::TestAllocatorMonitor tam(&ta);

 MyList<int> theList(&ta);
 ASSERT(&ta == theList.get_allocator());
 ASSERT(tam.isInUseSame()); // No memory was consumed by constructor.

 theList.emplace_back(3);
 ASSERT(1 == tam.numBlocksInUseChange()); // exactly one block used

 theList.pop_back();
 ASSERT(tam.isInUseSame()); // back to original memory use

 ASSERT(dam.isTotalSame()); // Default allocator is unused in block.
 ASSERT(onm.isTotalSame()); // 'operator new' is unused in block.

 // 'ta' destructor checks for memory leaks.
}

Allocating memory correctly is a distinct concern that is conditioned, but not
ensured, by the correct setting of the allocator itself. After each constructor

Page 41 of 59

call, we verify that get_allocator returns the expected result and that the
expected number of bytes or blocks was allocated from the allocator.

An object should allocate and deallocate only from the allocator acquired on
construction, except that transient allocations and their corresponding
deallocations should use the global allocator or a locally defined allocator.
Special care must be taken to ensure that copy and move constructors and
assignment operators allocate the correct amount of memory from the correct
allocator. The following list summarizes the six requirements.

1) The nonextended copy constructor creates an object having the default
allocator and allocates from only that allocator, regardless of the
allocator held by the copied-from object.

2) The extended copy constructor creates an object having the specified
allocator and allocates from only that allocator, regardless of the
allocator held by the copied-from object.

3) The nonextended move constructor creates an object having a copy of the
moved-from object’s allocator. Typically, the move constructor would not
allocate any memory.

4) The extended move constructor behaves like the regular move
constructor if the allocator specified in the constructor arguments
compares equal to the allocator of the moved-from object. Otherwise, the
extended move constructor behaves like the extended copy constructor.
Alternatively, if the element type is not AA and has a nonthrowing move
operation, a container can perform element-by-element move, rather
than copy. (For example, bsl::shared_ptr has optimized move
construction but is not AA.)

5) The copy-assignment operator allocates only from the allocator of the
left-side operand, which does not change as a result of the assignment.

6) The move-assignment operator should not allocate if the moved-to object
has an allocator equal to that of the moved-from object; otherwise, the
move-assignment operator should behave like the copy-assignment
operator or, as in the case of the extended move constructor, perform
element-by-element move construction or assignment.

When testing a class template, the facilities in the bsltf package44 can help.
The bsltf::AllocTestType, for example, is a simple bsl-AA type that we use
to verify that our MyList container propagates its allocator to its contained
elements:

bslma::TestAllocator ta1("test alloc 1", veryVeryVeryVerbose);
bslma::TestAllocator ta2("test alloc 2", veryVeryVeryVerbose);
MyList<bsltf::AllocTestType> theList(&ta1);
...
bsltf::AllocTestType val5(5, &ta2);
ASSERT(&ta2 == val5.get_allocator()); // uses specified allocator

44 bloombergf

Page 42 of 59

theList.emplace_back(val5);
ASSERT(&ta1 == theList.back().get_allocator()); // uses list's allocator

Our last testing goal is informally referred to as allocation-caused exception
safety. Any class that allocates memory might encounter an out-of-memory
exception, especially when using an allocator that obtains memory from an
intentionally limited pool. The test allocator has a setAllocationLimit(n)
manipulator that will cause the allocator to throw an exception at the nth
allocation (counting from 0). This manipulator is typically used idiomatically by
the BSLMA_TESTALLOCATOR_EXCEPTION_TEST_BEGIN/_END macros (defined in
bslma_testallocator.h) to run an exception-safety test on a block of code
having a deterministic allocation pattern. The macros execute the code in a try
block within a loop, catching the exceptions thrown by the test allocator.
Beginning with an allocation limit of 0, the limit is incremented each time an
exception is caught. The process is repeated until the code being tested
completes without throwing. This idiom tests that the block of code handles
failure cleanly at each possible allocation point. After the _END macro, we
should verify that no memory was leaked from the allocator. We use this idiom
to test emplace_back’s exception safety:

bslma::TestAllocator ta("list alloc", veryVeryVeryVerbose);
BSLMA_TESTALLOCATOR_EXCEPTION_TEST_BEGIN(ta) {
 MyList<bsltf::AllocTestType> theList(&ta);
 for (int i = 0; i <= 5; ++i) {
 bsltf::AllocTestType v(i); // uses default allocator
 theList.emplace_back(v);
 }
 ASSERT(5 == theList.back().data()); // minimal correctness check
} BSLMA_TESTALLOCATOR_EXCEPTION_TEST_END
ASSERT(0 == ta.numBlocksInUse());

Each iteration of the for loop requires two allocations: one for the new list
node and one for the value of the test object stored in the node. If we had
needed a proctor in our emplace_back implementation and forgotten to add
one, this test would have detected a leak in the final ASSERT.

In rare cases, we want to test specific postconditions for an exception beyond
the absence of leaks and corruption. Our emplace_back operation, for
example, has the strong guarantee; the list should be unmodified if the
operation does not succeed. One way to test these postconditions is to create
an RAII class with a destructor that encapsulates those postcondition checks.
The class can be either general or tailored for a specific test. We create such a
tailored class for our emplace_back test as follows:

class PushBackExcCheck {
 MyList<bsltf::AllocTestType> const *d_list_p;
 MyList<bsltf::AllocTestType> d_snapshot; // uses default alloc
 public:
 explicit PushBackExcCheck(const MyList<bsltf::AllocTestType> *list_p)
 : d_list_p(list_p), d_snapshot() { }

Page 43 of 59

 ~PushBackExcCheck() {
 if (d_list_p) ASSERT(*d_list_p == d_snapshot);
 }

 void checkpoint() { d_snapshot = *d_list_p; }
 void release() { d_list_p = nullptr; }
};

The checkpoint method takes a snapshot of the list and should be called
before any potentially throwing operation having the strong guarantee. The
release method should be called when all the operations have completed
successfully, so that the destructor does not test the exceptional conditions
when an exception was not thrown. Employing this checker class, we can
enhance the previous exception test:

bslma::TestAllocator ta("list alloc", veryVeryVeryVerbose);
BSLMA_TESTALLOCATOR_EXCEPTION_TEST_BEGIN(ta) {
 MyList<bsltf::AllocTestType> theList(&ta);
 PushBackExcCheck excChecker(&theList);
 for (int i = 0; i <= 5; ++i) {
 bsltf::AllocTestType v(i); // uses default allocator
 excChecker.checkpoint();
 theList.emplace_back(v);
 }
 excChecker.release();
 ASSERT(5 == theList.back().data()); // minimal sanity check
} BSLMA_TESTALLOCATOR_EXCEPTION_TEST_END
ASSERT(0 == ta.numBlocksInUse());

Although these allocator-specific tests add bulk to the test driver, they actually
highlight one of the strengths of making a type AA: We can instrument every
aspect of memory allocation easily, without modifying the allocating class and
we can use forced allocation failures as a technique to validate exception
safety.

Conclusion
Ensuring that reusable components are AA is a critical part of Bloomberg’s
success in achieving performance, object placement, metrics gathering,
thorough testing, and effective debugging. The effort of converting a non-AA
component to an AA one, though not negligible, need not be excessive and is in
most cases straightforward in nature.

The steps defined in this paper can be condensed into the following quick
reference for defining a bsl-AA type.

1. Define an allocator_type member type that is an alias for
bsl::allocator<>.

class Thing {
 // ...
 public:
 using allocator_type = bsl::allocator<>

Page 44 of 59

2. If you need a default constructor, also define an extended default
constructor.

 Thing();
 explicit Thing(const allocator_type& allocator = {});

3. Define all seven of the Rule of Five Plus Two members: copy constructor,
extended copy constructor, move constructor, extended move
constructor, copy-assignment operator, move-assignment operator, and
destructor. Typically, only the move constructor (and, implicitly, the
destructor) can be noexcept.

 Thing(const Thing&);
 Thing(const Thing&, const allocator_type&);
 Thing(Thing&&) noexcept;
 Thing(Thing&&, const allocator_type&);
 ~Thing();

 Thing& operator=(const Thing&);
 Thing& operator=(Thing&&);

4. For all other constructors, ensure that there also exists an extended
version that takes an allocator, either by adding a defaulted allocator
parameter to the end of the parameter list or by defining an overload with
an allocator parameter (using either the trailing- or leading-allocator
convention).

 explicit Thing(int);
 Thing(int, const allocator_type&);
 // ...
};

5. The implementation of each regular (nonextended) constructor should
delegate to its corresponding extended constructor. The move
constructor should get its allocator from its argument; all other
nonextended constructors should use a default-constructed allocator.

Thing::Thing() : Thing(allocator_type()) { }
Thing::Thing(const Thing& original)
 : Thing(original, allocator_type()) { }
Thing::Thing(Thing&& original)
 : Thing(original, original.get_allocator()) { }
Thing(int i) : Thing(i, allocator_type()) { }

6. If the type does not manage its own memory resources and has no intra-
member invariants, then the move and copy assignment operators and
the destructor can be defaulted; otherwise, they all need to be user
provided.

Page 45 of 59

Thing(const Thing& original, const allocator_type& allocator)
 : d_allocator(allocator)
 , d_data_p(bslma::AllocatorUtil::newObject<DATA>(
 *original.d_data_p))
 // ...
{
 // ...
}

7. If you must define a member variable of allocator_type (as opposed to
retrieving it from a subobject), never assign to that allocator member.
Similarly, never swap allocators between objects.

8. Whenever possible, provide a get_allocator accessor that either
returns a copy of the allocator member (if any) or retrieves the allocator
from a subobject.

Thing::allocator_type Thing::get_allocator() const
{
 return d_allocator;
}

For simple types, such as structs and attribute classes, the basic guidelines
shown in this paper allow readers to plumb — swiftly and correctly — their
own types to be AA. For more sophisticated components, the (open-source)
BDE45 infrastructure provides low-level components (e.g., bslma_aatypeutil,
bslma_constructionutil, and bslma_testallocator) and tools46 to
facilitate the creation, testing, and validation of AA components. Along with
these assets, the recipes delineated in this paper should yield robust and
reusable AA software.

APPENDIX A. Converting from Legacy-AA to Bsl-AA
As of June 2020, most AA classes at Bloomberg are legacy-AA, using an old
interface style in which allocators are conveyed as raw pointers of type
bslma::Allocator* instead of as objects of type bsl::allocator<T>.
Transitioning to the bsl-AA model provides the following benefits.

• The bsl-AA model is more like the C++ Standard’s pmr-AA model and, for
C++17 and later platform libraries, is built on and compatible with pmr.

• The allocator can never accidentally be null because bsl::allocator
has a default constructor that selects the currently installed default
allocator.

• The bsl-AA model is compatible with C++11 AA constructs. For example,
a bsl-AA type X can be stored in a std::vector<X,

45 bloombergi
46 Refer to bloombergh for a description of the bde_verify tool, which detects a number of
allocator-related errors and offers other guidance.

Page 46 of 59

bsl::allocator<X>>, and will correctly inherit its allocator from the
vector.

To convert a class from the legacy-AA interface to the bsl-AA interface, follow
the nine steps described here.

1) Make bsl::allocator available for use:

Add #include <bslma_bslallocator.h>

In BDE 3.x, the header was named <bslma_stdallocator.h>. The old
name continues to work.

2) Add an allocator_type alias (or typedef in C++03) in the public part
of the class. An existing bslma::UsesBslmaAllocator trait declaration
is harmless but no longer necessary; the same applies to #include
<bslma_usesbslmaallocator.h>:

Before
public:
 // TRAITS
 BSLMF_NESTED_TRAIT_DECLARATION(Thing,
 bslma::UsesBslmaAllocator);

After
public:
 // TYPES
 using allocator_type = bsl::allocator<>;

3) If the class has a member variable of type bslma::Allocator*, change it
to allocator_type (and remove the _p suffix in the name, if any):

Before bslma::Allocator *d_alloc_p;

After allocator_type d_alloc;

4) Change any constructors that take a bslma::Allocator* parameter to
instead take a const allocator_type& parameter. Since the allocator
parameter can no longer be confused with the bslma::Allocator type,
change the name basicAllocator to just allocator. If the allocator
parameter has a 0 default value, change the default expression to an
empty initializer list:

Before explicit Thing(int, bslma::Allocator *basicAllocator = 0);

After explicit Thing(int, const allocator_type& allocator = {});

Note that if C++03 compatibility is needed, the empty initializer list ({})
must be replaced with an explicit constructor call (allocator_type()).
Don’t forget to update the constructor documentation to reflect the new
parameter names and defaults.

Page 47 of 59

5) Remove the use of bslma::Default::allocator for denullifying an
allocator argument:

Before Thing::Thing(int, bslma::Allocator *basicAllocator)
 : d_alloc_p(bslma::Default::allocator(basicAllocator))

After Thing::Thing(int, const allocator_type& allocator)
 : d_alloc(allocator)

6) If the class code initializes any legacy-AA class members, then pass the
allocator to bslma::AllocatorUtil::adapt when initializing those
members:

Before
Thing::Thing(int, bslma::Allocator *basicAllocator)
 : d_name(basicAllocator) // bsl-AA member
 , d_data(basicAllocator) // legacy-AA member

After
Thing::Thing(int, const allocator_type& allocator)
 : d_name(allocator) // bsl-AA member
 , d_data(bslma::AllocatorUtil::adapt(allocator))
 // legacy-AA member

Note that this conversion can also be applied when initializing d_name
but is unnecessary in that case because we know that d_name is bsl-AA.

7) Add a new get_allocator method. For now, keeping a modified version
of the allocator method is recommended for compatibility with existing
legacy-AA client code:

Before inline bslma::Allocator *Thing::allocator() const
 { return d_alloc_p; }

After

inline Thing::allocator_type Thing::get_allocator() const
 { return d_alloc; }

inline bslma::Allocator *Thing::allocator() const
 { return get_allocator().mechanism(); }

8) Replace uses of operator new(bslma::Allocator&) and
bslma::Allocator::deleteObject with
bslma::AllocatorUtil::newObject and
bslma::AllocatorUtil::deleteObject, respectively, and replace old
proctors with their newer versions:

Before

Node *node_p = new(*allocator()) Node;
bslma::DeallocatorProctor<bslma::Allocator>
 nodeProct(node_p, allocator());
bslma::ConstructionUtil::construct(node_p->d_value.address(),
 allocator(), value);
...
bslma::DestructionUtil::destroy(node_p->d_value.address());

Page 48 of 59

allocator()->deleteObject(node_p);

Page 49 of 59

After

Node *node_p =
 bslma::AllocatorUtil::newObject<Node>(get_allocator());
bslma::DeleteObjectProctor<allocator_type, Node>
 nodeProct(get_allocator(), node_p);
bslma::ConstructionUtil::construct(node_p->d_value.address(),
 get_allocator(), value);
...
bslma::DestructionUtil::destroy(node_p->d_value.address());
bslma::AllocatorUtil::deleteObject(get_allocator(), node_p);

Alternatively, though the allocator member can be stored as an
appropriate instantiation of bsl::allocator and used directly to
allocate, deallocate, construct, and destroy an object, doing so does not
make the code any more compact in most cases:

After
(Alter-
native)

bsl::allocator<Node> nodeAlloc(get_allocator());
Node *node_p = nodeAlloc.allocate(1);
bslma::DeallocateObjectProctor<bsl::allocator<Node>>
 nodeProct(nodeAlloc, node_p);
nodeAlloc.construct(node_p->d_value.address(), value);
...
nodeAlloc.destroy(node_p->d_value.address());
nodeAlloc.dallocate(node_p);

9) The existing test driver should compile and run with no changes; we
should, however, at least add tests for the bsl::uses_allocator trait
and the get_allocator method and test each constructor with a
bsl::allocator<> argument:

Before

typedef MyList<int> Obj;
ASSERT(bslma::UsesBslmaAllocator<Obj>::value);
...
Obj mX(&theTestAlloc); const Obj& X = mX;
ASSERT(&theTestAlloc == X.allocator());

After

typedef MyList<int> Obj;
ASSERT(bslma::UsesBslmaAllocator<Obj>::value);
ASSERT((bsl::uses_allocator<Obj, bsl::allocator<>>::value));
...
bsl::allocator<> bslTestAlloc(&theTestAlloc);
Obj mX(bslTestAlloc); const Obj& X = mX;
ASSERT(&theTestAlloc == X.allocator());
ASSERT(bslTestAlloc == X.get_allocator());

Page 50 of 59

APPENDIX B. Mapping BDE AA Development to
C++20 PMR AA Development

The C++17/C++20 Polymorphic Memory Resource (PMR) library is an offshoot of
the Bloomberg allocator library. The C++17 Standard
std::pmr::memory_resource abstract base class is nearly identical to
Bloomberg’s bslma::Allocator class; the major differences are that the PMR
allocate method takes an alignment argument in addition to the number of
bytes and that the PMR public member functions are nonvirtual functions that
call private virtual functions (e.g., allocate is a nonvirtual function that calls
the virtual function do_allocate), following the pattern for other abstract base
classes in the Standard. Similarly, the C++17 Standard
std::pmr::polymorphic_allocator class template is identical to
Bloomberg’s bsl::allocator template except that the former stores a pointer
to a pmr::memory_resource (returned by the resource method) instead of a
pointer to a bslma::Allocator (returned by the mechanism method). In
C++20, polymorphic_allocator has additional methods, new_object and
delete_object, that simplify allocating and deallocating as well as
constructing and destroying an object from an allocator and virtually eliminate
the need to call the memory_resource accessor.47 Note that BDE’s legacy-AA
interface has no equivalent in the C++ Standard Library; i.e., none of the AA
types use pmr::memory_resource* in their interfaces except indirectly
through pmr::polymorphic_allocator.

To construct an object in uninitialized memory, the C++20 library has
std::uninitialized_construct_using_allocator, which works similarly
to bslma::ConstructionUtil::construct in the BDE library, ignoring the
allocator for non-AA types and passing it to the constructor for AA types. The
easiest way to initialize a member variable or local variable in C++20 is with
std::make_using_allocator, which constructs and returns a value of
specified type, again handling or ignoring the allocator as appropriate:

template <class TYPE>
class Thing {
 std::pmr::polymorphic_allocator<> d_allocator;
 TYPE d_data;
 // ...
 public:
 using allocator_type = std::pmr::polymorphic_allocator<>;

 Thing();
 explicit Thing(const allocator_type& alloc);
 // ...
};

47 This functionality is being considered for bsl::allocator in a future release of the BDE
library.

Page 51 of 59

template <class TYPE>
Thing<T>::Thing(const allocator_type& alloc)
 : d_allocator(alloc), d_data(make_using_allocator<TYPE>(alloc)) { }

This idiom relies on C++20’s rules for materialization of temporary variables
(sometimes referred to as guaranteed copy elision); the return value of
make_using_allocator is constructed directly into the d_data member
without invoking a copy or move constructor. These construction rules make it
unnecessary to use a wrapper class like bslalg::ConstructorProxy. The
BDE equivalent is bslma::ConstructionUtil::make, which takes advantage
of copy elision in all the C++11 compilers in use at Bloomberg, even though the
new materialization rules were not standardized until C++17.

The C++20 Standard Library contains no proctors, but std::unique_ptr can
be even more effective in this role with the appropriate use of custom deleters,
easy-to-author types that operate on a specified address when a unique_ptr
goes out of scope. A unique_ptr with a deleter that invokes
bslma::AllocatorUtil::deleteObject is straightforward to define and use
as a proctor:

class pmr_deleter
{
 bsl::polymorphic_allocator<> d_alloc;

 public:
 template <class TYPE>
 pmr_deleter(const bsl::polymorphic_allocator<TYPE>& alloc)
 : d_alloc(alloc) {}

 template <class TYPE>
 void operator()(TYPE *p)
 { bslma::AllocatorUtil::deleteObject(d_alloc, p); }
};

...
 my_Class *p = AllocUtil::newObject<my_Class>(alloc, &counter);
 std::unique_ptr<my_Class, pmr_deleter> proctor(p, alloc);
 // ...
 proctor.release();

A proposal currently in review in the C++ Standards Committee calls for
(among other things) an allocate_unique function that allocates memory,
constructs an object in the memory, and returns a unique_ptr, thus
combining object allocation, construction, and exception-protection into one
step.48 Additionally, bslma::TestAllocator has no equivalent in the C++
Standard Library, but one has been proposed and source code is available.49

48 köppe20
49 fehér19b provides the proposal, and fehér19c offers the source for a reference
implementation.

Page 52 of 59

APPENDIX C. Allocator-Aware Move Operations in C++03
Types that allocate memory often benefit from efficient move constructors and
move-assignment operators that transfer pointers rather than copying objects.
Move operations depend on rvalue references, which were introduced in C++11
but are partially emulated for C++03 in the bslmf_movableref component.
Using bslmf::MovableRef instead of rvalue references, we can write move
constructors and move-assignment operators, as well as their allocator-
extended variants, that are portable between C++03 and C++11 and later.

Let’s summarize the bslmf_movableref component.50

• An instantiation of bslmf::MovableRef<T> emulates T&& (i.e., an rvalue
reference) when compiled with a pre-C++11 compiler and is a
nondeducible alias for T&& when compiled with a C++11 or later
compiler.

• An expression, expr, of type bslmf::MovableRef<T> is implicitly
convertible to T& (i.e., an lvalue reference). The conversion can be made
explicit by calling bslmf::MovableRefUtil::access(expr) (e.g., to
access a member of T through a MovableRef<T>).

• A call to bslmf::MovableRefUtil::move(ref) emulates
std::move(ref), returning a bslmf::MovableRef to the object
referenced by (an lvalue or rvalue) ref.

To express move operations in C++03, we will need to use bslmf::MovableRef
to declare not only the regular and extended move constructors, but also the
move-assignment operator which, in C++11, often could have been implicitly
declared. We also cannot implicitly declare the copy constructor and copy-
assignment operator because the presence of the user-defined move
constructor and move-assignment operator would cause a C++11 compiler to
suppress automatic generation of these operations for reasons unrelated to
allocators. Adding the allocator-extended copy and move constructors to the
Rule of Five gives us the Rule of Five Plus Two, the complete set of which are
now required for our C++03-compatible Thing class, as shown in the example
below. Note that the set includes only six separate members because the copy
constructor and extended copy constructor are combined into one:

 typedef bsl::allocator<> allocator_type;

 Thing(const Thing& original,
 const allocator_type& allocator = allocator_type());
 Thing(bslmf::MovableRef<Thing> original) BSLS_KEYWORD_NOEXCEPT;
 Thing(bslmf::MovableRef<Thing> original,
 const allocator_type& allocator);
 ~Thing(); // OPTIONAL

50 See complete documentation in bloombergb.

Page 53 of 59

 Thing& operator=(const Thing& rhs);
 Thing& operator=(bslmf::MovableRef<Thing> rhs);

 allocator_type get_allocator() const;

The above C++03 declarations require no modifications to work in C++11,
though the presence of the user-defined copy-constructor, move-constructor,
copy-assignment, and move-assignment declarations add significant clutter in
cases in which the C++ compiler could have generated them automatically. The
destructor declaration is typically required in both C++03 and C++11 because
the compiler can seldom generate a correct destructor automatically for an
allocating type but can be omitted for a type, like this one, that delegates all
allocations and deallocations to its member variables. Three additional
adaptations for C++03 are the use of typedef instead of using to declare
allocator_type, the use of allocator_type() instead of {} to initialize the
default allocator parameters, and the use of BSLS_KEYWORD_NOEXCEPT instead
of the noexcept keyword to indicate that an operation cannot throw an
exception.

To conclude our exposition of C++03 compatibility, let’s look at the complete
implementations of the Rule of Five Plus Two operations for the Thing type
described in section “Making a Simple struct AA.” Note that the absence of
delegating constructors in C++03 requires a good deal of code duplication
between the regular and extended move constructors:

// combined regular and allocator-extended copy ctor
Thing::Thing(const Thing& original, const allocator_type& allocator)
 : d_name(original.d_name, bslma::AllocatorUtil::adapt(allocator))
 , d_data(original.d_data, bslma::AllocatorUtil::adapt(allocator))
 , d_score(original.d_score)
 , d_rank(original.d_rank)
{
}

// regular move ctor
Thing::Thing(bslmf::MovableRef<Thing> original) BSLS_KEYWORD_NOEXCEPT
 : d_name(bslmf::MovableRefUtil::move(
 bslmf::MovableRefUtil::access(original).d_name))
 , d_data(bslmf::MovableRefUtil::move(
 bslmf::MovableRefUtil::access(original).d_data))
 , d_score(original.d_score)
 , d_rank(original.d_rank)
{
}

Page 54 of 59

// allocator-extended move ctor; may throw
Thing::Thing(bslmf::MovableRef<Thing> original,
 const allocator_type& allocator)
 : d_name(bslmf::MovableRefUtil::move(
 bslmf::MovableRefUtil::access(original).d_name)),
 bslma::AllocatorUtil::adapt(allocator))
 , d_data(bslmf::MovableRefUtil::move(
 bslmf::MovableRefUtil::access(original).d_data)),
 bslma::AllocatorUtil::adapt(allocator))
 , d_score(original.d_score)
 , d_rank(original.d_rank)
{
}

// destructor
Thing::~Thing() // OPTIONAL
{
}

// copy-assignment operator
Thing& Thing::operator=(const Thing& rhs) {
 d_name = rhs.d_name;
 d_data = rhs.d_data;
 d_score = rhs.d_score;
 d_rank = rhs.d_rank;
 return *this;
}

// move-assignment operator
Thing& Thing::operator=(bslmf::MovableRef<Thing> rhs) {
 Thing& rhsRef = rhs;
 d_name = bslmf::MovableRefUtil::move(rhsRef.d_name);
 d_data = bslmf::MovableRefUtil::move(rhsRef.d_data);

 // The use of 'bslmf::MovableRefUtil::move' is optional for the
 // two integer members.
 d_score = bslmf::MovableRefUtil::move(rhsRef.d_score);
 d_rank = bslmf::MovableRefUtil::move(rhsRef.d_rank);
 return *this;
}

APPENDIX D. Alternatives to Storing the Allocator
in the Object Footprint

The allocator for an AA class object is typically stored as a data member,
contributing the size of a bsl::allocator (one pointer size) to the footprint of
the object. This overhead is unacceptable in some applications. For example,
given a vector of ten million vectors, where 90% of the inner vectors are empty,
the wasted space due to the allocator members is about 69MB (assuming 64-
bit pointers), which might be significant in memory-constrained environments.
The allocator member might cause a class that would fit into a single cache line
without allocators to instead straddle two cache lines.

Page 55 of 59

If measurement and calculation show that the allocator within the memory
footprint of a class is a problem for a specific application or library, numerous
techniques are available to preserve allocator awareness while eliminating the
allocator from the object’s footprint; what follows is just a small sampling. Note
that all these examples involve creating classes not usually found in existing
AASI libraries, but these new classes are themselves reusable for other
situations where a small footprint is critical. Also note that these designs tend
to favor reducing memory consumption at a (sometimes significant) cost in the
number of (potentially branching) instructions executed.

The most practical approach is to store the allocator within the object footprint
only when the object is holding no other data (e.g., an empty container), and
otherwise store the allocator on the heap as part of the object’s allocated
memory. In our vector example, we could create a custom vector,
UsuallyEmptyVector,51 where the allocator and the data pointer share space
in a union. The allocator is stored in the union when the vector’s capacity is
zero (i.e., no memory has been allocated) and in a prefix to the allocated chunk
otherwise. We can do better though. If footprint size truly is critical, we can
make our UsuallyEmptyVector footprint just one pointer. Assuming that
bslma::Allocator (or bsl::memory_resource) has an alignment requirement
of at least 2 bytes, we can steal the low-order bit of a multipurpose pointer to
indicate whether the vector is empty; 1 would indicate an empty vector, where
the rest of the pointer points to the memory resource, and 0 would indicate a
nonempty vector, where the rest of the pointer points to the start of the
allocated data area. The data area would contain the length, capacity, and
allocator, followed by the actual vector elements. Stealing a bit from a pointer
can be challenging to do correctly and portably but is exactly the kind of
practical engineering that is worth doing (taking advantage of known platform
behavior) when constraints are especially tight.

Another approach52 that doesn’t actually reduce the object footprint but uses
the footprint more efficiently is to implement the small-string optimization.
Storing a data pointer, size, capacity, and allocator are all unnecessary when
the bytes that make up the string value fit within the string footprint, and this
approach capitalizes on that knowledge. Two bits of the last byte of the string
footprint are used to hold bookkeeping information indicating a) whether the
string exceeds the small-string capacity and b) whether the memory resource is
not the same as the one returned by pmr::new_delete_resource. If both are
zero, then the last byte becomes the null terminator for the string and the

51 Calling our customized vector SmallVector or TinyVector might be tempting, but the
vector is actually the reverse of what most people mean by a “small vector.” Existing
SmallVector classes (e.g., see llvm19) store a small number of elements directly in the object
footprint, making the footprint bigger rather than smaller and using much more space for
empty vectors than our UsuallyEmptyVector would.
52 alexandrescu04, time 46:13

Page 56 of 59

entire footprint can be used for the small string optimization. Otherwise, the
string representation trades off small-string space for storing the additional
data necessary for the allocator and capacity. This approach must be applied
carefully, with attention to the pointer layout on the target hardware. It can be
combined with the previous approach to produce a one-pointer string that can
still use the small-object optimization for up to 7 bytes if the new/delete
resource is used.

Finally, let’s consider ILAR53 allocators. This framework involves an external
lookup table that maps address ranges to allocators. Instead of storing the
allocator in the object footprint, an object finds its allocator by looking up its
own address in the external table. In the case of our vector of usually empty
vectors, the outer vector’s allocator would register the blocks it allocates in the
lookup table so that the inner (usually empty) vectors could find themselves
there. ILAR allocators require significant collaboration between allocators and
clients, and the lookup table must be carefully managed, especially in a
multithreaded environment, but for a memory-constrained application, an ILAR
allocator might be a reasonable engineering choice.

53 Inverse Lookup Allocator Registry, invented by Hyman Rosen of Bloomberg

Page 57 of 59

Works Cited
alexandrescu04. A. Alexandrescu, “Write Less Code and More Software,” talk

given at Amazon, June 4, 2004.
https://youtu.be/Lv5vQXraGJM?t=2773

bloomberga. BDE API Documentation, v. 3.93.1.0, Bloomberg, accessed May 6,
2020.
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/

bloombergb. “Component bslmf_movableref,” BDE API Documentation,
v. 3.93.1.0, Bloomberg, accessed May 6, 2020.
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/
group__bslmf__movableref.html

bloombergc. “Component bslma_autodestructor,” BDE API Documentation,
v. 3.93.1.0, Bloomberg, accessed May 6, 2020.
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/
group__bslma__autodestructor.html

bloombergd. “Component bslma_testallocator,” BDE API Documentation,
v. 3.93.1.0, Bloomberg, accessed May 6, 2020.
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/
group__bslma__testallocator.html

bloomberge. “Component bslma_testallocatormonitor,” BDE API
v. 3.93.1.0, Documentation, Bloomberg, accessed May 6, 2020.
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/
group__bslma__testallocatormonitor.html

bloombergf. “Package bsltf,” BDE API Documentation, v. 3.93.1.0, Bloomberg,
accessed May 6, 2020.
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/
group__bsltf.html

bloombergg. “Component bslma_usesbslmaallocator,” BDE API
Documentation, v. 3.93.1.0, Bloomberg, accessed May 6, 2020.
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/
group__bslma__usesbslmaallocator.html

bloombergh. “bde_verify,” BDE Tools Documentation, Bloomberg, accessed
May 6, 2020.
https://bde.bloomberg.com/bde-verify/index.html (Bloomberg internal
access required)

bloombergi. “BDE Libraries,” Github source repository, accessed June 30,
2020.
https://github.com/bloomberg/bde

https://youtu.be/Lv5vQXraGJM?t=2773
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslmf__movableref.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslmf__movableref.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslma__autodestructor.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslma__autodestructor.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslma__testallocator.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslma__testallocator.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslma__testallocatormonitor.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslma__testallocatormonitor.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bsltf.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bsltf.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslma__usesbslmaallocator.html
https://bloomberg.github.io/bde-resources/doxygen/bde_api_prod/group__bslma__usesbslmaallocator.html
https://bde.bloomberg.com/bde-verify/index.html
https://github.com/bloomberg/bde

Page 58 of 59

fehér19a. A. Fehér. “test_resource: The pmr Detective,” C++ Conference
(CppCon), Aurora, CO, September, 2019.
https://youtu.be/vijveMT2OCY

fehér19b. A. Fehér and A. Meredith. “Add Test Polymorphic Memory Resource
to the Standard Library,” C++ Standards Committee Working Group
ISOCPP, Technical Report P1160R1, October 7, 2019.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p1160r1.pdf

fehér19c. A. Fehér. “P1160 Add Test Polymorphic Memory Resource to
Standard Library,” GitHub source repository, 2019.
https://github.com/bloomberg/p1160

halpern20a. P. Halpern and J. Lakos. “Value Proposition: Allocator-Aware (AA)
Software,” C++ Standards Committee Working Group ISOCPP, Technical
Report P2035R0, January 12, 2020.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/
p2035r0.pdf

halpern20b. P. Halpern. “Unleashing the Power of Allocator-Aware Software
Infrastructure,” C++ Standards Committee Working Group ISOCPP,
Technical Report P2126R0, March 2, 2020.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/
p2126r0.pdf

iso20. “ISO/IEC 14882:2020 Programming Language C++,” International
Standards Organization (ISO) Draft International Standard N4860, March
31, 2020. (Free version available as N4861.)
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2020/n4860
.pdf

john18. G. John, “Rule of Three vs Rule of Five in C++?” Tutorials Point,
February, 28, 2018.
https://www.tutorialspoint.com/Rule-of-Three-vs-Rule-of-Five-in-
Cplusplus

köppe20. T. Köppe. “Allocator-Aware Library Wrappers for Dynamic
Allocation,” C++ Standards Committee Working Group ISOCPP, Technical
Report P0211R3, January 14, 2020.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/
p0211r3.html

lakos19. J. Lakos. “Value Proposition: Allocator-Aware (AA) Software,” C++
Conference (CppCon), Aurora, CO, September 16, 2019.
https://youtu.be/ebn1C-mTFVk?t=1770

llvm19. “llvm::SmallVector< T, N > Class Template Reference,” LLVM
15.0.0 Documentation, accessed March 24, 2022.
https://llvm.org/doxygen/classllvm_1_1SmallVector.html?msclkid=bbbd
ecd1abb411ecab8bd2a9bb9805d0

https://youtu.be/vijveMT2OCY
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1160r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1160r1.pdf
https://github.com/bloomberg/p1160
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2035r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2035r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2126r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2126r0.pdf
http://wg21.link/n4861
http://wg21.link/n4860
http://wg21.link/n4860
https://www.tutorialspoint.com/Rule-of-Three-vs-Rule-of-Five-in-Cplusplus
https://www.tutorialspoint.com/Rule-of-Three-vs-Rule-of-Five-in-Cplusplus
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0211r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0211r3.html
https://youtu.be/ebn1C-mTFVk?t=1770
https://llvm.org/doxygen/classllvm_1_1SmallVector.html?msclkid=bbbdecd1abb411ecab8bd2a9bb9805d0
https://llvm.org/doxygen/classllvm_1_1SmallVector.html?msclkid=bbbdecd1abb411ecab8bd2a9bb9805d0

Page 59 of 59

meredith19. A. Meredith and P. Halpern, “Getting Allocators Out of Our Way,”
C++ Conference (CppCon), Aurora, CO, September 18, 2019.
https://www.youtube.com/watch?v=RLezJuqNcEQ

sommerlad19. P. Sommerlad and A. L. Sandoval, “Generic Scope Guard and
RAII Wrapper for the Standard Library,” C++ Standards Committee
Working Group ISOCPP, Technical Report P0052R10, February 19, 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/
p0052r10.pdf

https://www.youtube.com/watch?v=RLezJuqNcEQ
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0052r10.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0052r10.pdf

