// bslstl_unorderedmultimap_cpp03.h                                   -*-C++-*-

// Automatically generated file.  **DO NOT EDIT**

#ifndef INCLUDED_BSLSTL_UNORDEREDMULTIMAP_CPP03
#define INCLUDED_BSLSTL_UNORDEREDMULTIMAP_CPP03

//@PURPOSE: Provide C++03 implementation for bslstl_unorderedmultimap.h
//
//@CLASSES: See bslstl_unorderedmultimap.h for list of classes
//
//@SEE_ALSO: bslstl_unorderedmultimap
//
//@DESCRIPTION:  This component is the C++03 translation of a C++11 component,
// generated by the 'sim_cpp11_features.pl' program.  If the original header
// contains any specially delimited regions of C++11 code, then this generated
// file contains the C++03 equivalent, i.e., with variadic templates expanded
// and rvalue-references replaced by 'bslmf::MovableRef' objects.  The header
// code in this file is designed to be '#include'd into the original header
// when compiling with a C++03 compiler.  If there are no specially delimited
// regions of C++11 code, then this header contains no code and is not
// '#include'd in the original header.
//
// Generated on Tue Nov  8 09:29:10 2022
// Command line: sim_cpp11_features.pl bslstl_unorderedmultimap.h

#ifdef COMPILING_BSLSTL_UNORDEREDMULTIMAP_H

namespace bsl {

template <class KEY,
          class VALUE,
          class HASH      = bsl::hash<KEY>,
          class EQUAL     = bsl::equal_to<KEY>,
          class ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE> > >
class unordered_multimap {
    // This class template implements a value-semantic container type holding a
    // collection of (possibly equivalent) keys (of the template parameter type
    // 'KEY'), each mapped to their associated values (of another template
    // parameter type 'VALUE').
    //
    // This class:
    //: o supports a complete set of *value-semantic* operations
    //:   o except for BDEX serialization
    //: o is *exception-neutral* (agnostic except for the 'at' method)
    //: o is *alias-safe*
    //: o is 'const' *thread-safe*
    // For terminology see {'bsldoc_glossary'}.

  private:
    // PRIVATE TYPES
    typedef bsl::allocator_traits<ALLOCATOR>                 AllocatorTraits;
        // This 'typedef' is an alias for the allocator traits type associated
        // with this container.

    typedef pair<const KEY, VALUE>                           ValueType;
        // This 'typedef' is an alias for the type of key-value pair objects
        // maintained by this unordered multimap.

    typedef ::BloombergLP::bslstl::UnorderedMapKeyConfiguration<const KEY,
                                                                ValueType>
                                                             ListConfiguration;
        // This 'typedef' is an alias for the policy used internally by this
        // container to extract the 'KEY' value from the values maintained by
        // this unordered multimap.

    typedef ::BloombergLP::bslstl::HashTable<ListConfiguration,
                                             HASH,
                                             EQUAL,
                                             ALLOCATOR>      Impl;
        // This 'typedef' is an alias for the template instantiation of the
        // underlying 'bslstl::HashTable' used to implement this unordered
        // multimap.

    typedef ::BloombergLP::bslalg::BidirectionalLink         HashTableLink;
        // This 'typedef' is an alias for the type of links maintained by the
        // linked list of elements held by the underlying 'bslstl::HashTable'.

    typedef BloombergLP::bslmf::MovableRefUtil               MoveUtil;
        // This 'typedef' is a convenient alias for the utility associated with
        // movable references.

    // FRIENDS
    template <class KEY2,
              class VALUE2,
              class HASH2,
              class EQUAL2,
              class ALLOCATOR2>
    friend bool operator==(
           const unordered_multimap<KEY2, VALUE2, HASH2, EQUAL2, ALLOCATOR2>&,
           const unordered_multimap<KEY2, VALUE2, HASH2, EQUAL2, ALLOCATOR2>&);

  public:
    // PUBLIC TYPES
    typedef KEY                                        key_type;
    typedef VALUE                                      mapped_type;
    typedef bsl::pair<const KEY, VALUE>                value_type;
    typedef HASH                                       hasher;
    typedef EQUAL                                      key_equal;
    typedef ALLOCATOR                                  allocator_type;

    typedef value_type&                                reference;
    typedef const value_type&                          const_reference;

    typedef typename AllocatorTraits::size_type        size_type;
    typedef typename AllocatorTraits::difference_type  difference_type;
    typedef typename AllocatorTraits::pointer          pointer;
    typedef typename AllocatorTraits::const_pointer    const_pointer;

    typedef ::BloombergLP::bslstl::HashTableIterator<
                         value_type, difference_type>  iterator;

    typedef ::BloombergLP::bslstl::HashTableIterator<
                   const value_type, difference_type>  const_iterator;

    typedef ::BloombergLP::bslstl::HashTableBucketIterator<
                         value_type, difference_type>  local_iterator;

    typedef ::BloombergLP::bslstl::HashTableBucketIterator<
                   const value_type, difference_type>  const_local_iterator;

  private:
    // DATA
    Impl d_impl;

  public:
    // CREATORS
    unordered_multimap();
    explicit unordered_multimap(size_type        initialNumBuckets,
                                const HASH&      hashFunction = HASH(),
                                const EQUAL&     keyEqual = EQUAL(),
                                const ALLOCATOR& basicAllocator = ALLOCATOR());
    unordered_multimap(size_type        initialNumBuckets,
                       const HASH&      hashFunction,
                       const ALLOCATOR& basicAllocator);
    unordered_multimap(size_type        initialNumBuckets,
                       const ALLOCATOR& basicAllocator);
    explicit unordered_multimap(const ALLOCATOR& basicAllocator);
        // Create an empty unordered multimap.  Optionally specify an
        // 'initialNumBuckets' indicating the minimum initial size of the array
        // of buckets of this container.  If 'initialNumBuckets' is not
        // supplied, a single empty bucket is used.  Optionally specify a
        // 'hashFunction' used to generate the hash values for the keys
        // contained in this unordered multimap.  If 'hashFunction' is not
        // supplied, a default-constructed object of the (template parameter)
        // type 'HASH' is used.  Optionally specify a key-equivalence functor
        // 'keyEqual' used to verify that two keys are equivalent.  If
        // 'keyEqual' is not supplied, a default-constructed object of the
        // (template parameter) type 'EQUAL' is used.  Optionally specify a
        // 'basicAllocator' used to supply memory.  If 'basicAllocator' is not
        // supplied, a default-constructed object of the (template parameter)
        // type 'ALLOCATOR' is used.  If the type 'ALLOCATOR' is
        // 'bsl::allocator' (the default), then 'basicAllocator', if supplied,
        // shall be convertible to 'bslma::Allocator *'.  If the type
        // 'ALLOCATOR' is 'bsl::allocator' and 'basicAllocator' is not
        // supplied, the currently installed default allocator is used.

    unordered_multimap(const unordered_multimap& original);
        // Create an unordered multimap having the same value as the specified
        // 'original' object.  Use a copy of 'original.hash_function()' to
        // generate hash values for the keys contained in this unordered
        // multimap.  Use a copy of 'original.key_eq()' to verify that two keys
        // are equivalent.  Use the allocator returned by
        // 'bsl::allocator_traits<ALLOCATOR>::
        // select_on_container_copy_construction(original.get_allocator())' to
        // allocate memory.  This method requires that the (template parameter)
        // types 'KEY' and 'VALUE' both be 'copy-insertable' into this
        // unordered multimap (see {Requirements on 'KEY' and 'VALUE'}).

    unordered_multimap(
                  BloombergLP::bslmf::MovableRef<unordered_multimap> original);
        // Create an unordered multimap having the same value as the specified
        // 'original' object by moving (in constant time) the contents of
        // 'original' to the new unordered multimap.  Use a copy of
        // 'original.hash_function()' to generate hash values for the keys
        // contained in this unordered multimap.  Use a copy of
        // 'original.key_eq()' to verify that two keys are equivalent.  The
        // allocator associated with 'original' is propagated for use in the
        // newly-created unordered multimap.  'original' is left in a valid but
        // unspecified state.

    unordered_multimap(
                const unordered_multimap&                      original,
                const typename type_identity<ALLOCATOR>::type& basicAllocator);
        // Create an unordered multimap having the same value as the specified
        // 'original' object that uses the specified 'basicAllocator' to supply
        // memory.  Use a copy of 'original.hash_function()' to generate hash
        // values for the keys contained in this unordered multimap.  Use a
        // copy of 'original.key_eq()' to verify that two keys are equivalent.
        // This method requires that the (template parameter) types 'KEY' and
        // 'VALUE' both be 'copy-insertable' into this unordered multimap (see
        // {Requirements on 'KEY' and 'VALUE'}).  Note that a
        // 'bslma::Allocator *' can be supplied for 'basicAllocator' if the
        // (template parameter) type 'ALLOCATOR' is 'bsl::allocator' (the
        // default).

    unordered_multimap(
            BloombergLP::bslmf::MovableRef<unordered_multimap> original,
            const typename type_identity<ALLOCATOR>::type&     basicAllocator);
        // Create an unordered multimap having the same value as the specified
        // 'original' object that uses the specified 'basicAllocator' to supply
        // memory.  The contents of 'original' are moved (in constant time) to
        // the new unordered multimap if 'basicAllocator ==
        // original.get_allocator()', and are move-inserted (in linear time)
        // using 'basicAllocator' otherwise.  'original' is left in a valid but
        // unspecified state.  Use a copy of 'original.hash_function()' to
        // generate hash values for the keys contained in this unordered
        // multimap.  Use a copy of 'original.key_eq()' to verify that two keys
        // are equivalent.  This method requires that the (template parameter)
        // types 'KEY' and 'VALUE' both be 'move-insertable' into this
        // unordered multimap (see {Requirements on 'KEY' and 'VALUE'}).  Note
        // that a 'bslma::Allocator *' can be supplied for 'basicAllocator' if
        // the (template parameter) type 'ALLOCATOR' is 'bsl::allocator' (the
        // default).

    template <class INPUT_ITERATOR>
    unordered_multimap(INPUT_ITERATOR   first,
                       INPUT_ITERATOR   last,
                       size_type        initialNumBuckets = 0,
                       const HASH&      hashFunction = HASH(),
                       const EQUAL&     keyEqual = EQUAL(),
                       const ALLOCATOR& basicAllocator = ALLOCATOR());
    template <class INPUT_ITERATOR>
    unordered_multimap(INPUT_ITERATOR   first,
                       INPUT_ITERATOR   last,
                       size_type        initialNumBuckets,
                       const HASH&      hashFunction,
                       const ALLOCATOR& basicAllocator);
    template <class INPUT_ITERATOR>
    unordered_multimap(INPUT_ITERATOR   first,
                       INPUT_ITERATOR   last,
                       size_type        initialNumBuckets,
                       const ALLOCATOR& basicAllocator);
    template <class INPUT_ITERATOR>
    unordered_multimap(INPUT_ITERATOR   first,
                       INPUT_ITERATOR   last,
                       const ALLOCATOR& basicAllocator);
        // Create an unordered multimap, and insert each 'value_type' object in
        // the sequence starting at the specified 'first' element, and ending
        // immediately before the specified 'last' element.  Optionally specify
        // an 'initialNumBuckets' indicating the minimum initial size of the
        // array of buckets of this container.  If 'initialNumBuckets' is not
        // supplied, a single empty bucket is used if 'first' and 'last' denote
        // an empty range, and an unspecified number of buckets is used
        // otherwise.  Optionally specify a 'hashFunction' used to generate
        // hash values for the keys contained in this unordered multimap.  If
        // 'hashFunction' is not supplied, a default-constructed object of
        // (template parameter) type 'HASH' is used.  Optionally specify a
        // key-equivalence functor 'keyEqual' used to verify that two keys are
        // equivalent.  If 'keyEqual' is not supplied, a default-constructed
        // object of (template parameter) type 'EQUAL' is used.  Optionally
        // specify a 'basicAllocator' used to supply memory.  If
        // 'basicAllocator' is not supplied, a default-constructed object of
        // the (template parameter) type 'ALLOCATOR' is used.  If the type
        // 'ALLOCATOR' is 'bsl::allocator' and 'basicAllocator' is not
        // supplied, the currently installed default allocator is used to
        // supply memory.  The (template parameter) type 'INPUT_ITERATOR' shall
        // meet the requirements of an input iterator defined in the C++11
        // standard [24.2.3] providing access to values of a type convertible
        // to 'value_type', and 'value_type' must be 'emplace-constructible'
        // from '*i' into this unordered multimap, where 'i' is a
        // dereferenceable iterator in the range '[first .. last)' (see
        // {Requirements on 'KEY' and 'VALUE'}).  The behavior is undefined
        // unless 'first' and 'last' refer to a sequence of valid values where
        // 'first' is at a position at or before 'last'.  Note that a
        // 'bslma::Allocator *' can be supplied for 'basicAllocator' if the
        // type 'ALLOCATOR' is 'bsl::allocator' (the default).

#if defined(BSLS_COMPILERFEATURES_SUPPORT_GENERALIZED_INITIALIZERS)
# ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
    template <
    class = bsl::enable_if_t<std::is_invocable_v<HASH, const KEY &>>,
    class = bsl::enable_if_t<
                         std::is_invocable_v<EQUAL, const KEY &, const KEY &>>,
    class = bsl::enable_if_t< bsl::IsStdAllocator_v<ALLOCATOR>>
    >
# endif
    unordered_multimap(
               std::initializer_list<value_type> values,
               size_type                         initialNumBuckets = 0,
               const HASH&                       hashFunction = HASH(),
               const EQUAL&                      keyEqual = EQUAL(),
               const ALLOCATOR&                  basicAllocator = ALLOCATOR());
# ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
    template <
    class = bsl::enable_if_t<std::is_invocable_v<HASH, const KEY &>>,
    class = bsl::enable_if_t< bsl::IsStdAllocator_v<ALLOCATOR>>
    >
# endif
    unordered_multimap(std::initializer_list<value_type> values,
                       size_type                         initialNumBuckets,
                       const HASH&                       hashFunction,
                       const ALLOCATOR&                  basicAllocator);
# ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
    template <
    class = bsl::enable_if_t< bsl::IsStdAllocator_v<ALLOCATOR>>
    >
# endif
    unordered_multimap(std::initializer_list<value_type> values,
                       size_type                         initialNumBuckets,
                       const ALLOCATOR&                  basicAllocator);
# ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
    template <
    class = bsl::enable_if_t< bsl::IsStdAllocator_v<ALLOCATOR>>
    >
# endif
    unordered_multimap(std::initializer_list<value_type> values,
                       const ALLOCATOR&                  basicAllocator);
        // Create an unordered multimap and insert each 'value_type' object in
        // the specified 'values' initializer list.  Optionally specify an
        // 'initialNumBuckets' indicating the minimum initial size of the array
        // of buckets of this container.  If 'initialNumBuckets' is not
        // supplied, a single empty bucket is used if 'values' is empty, and an
        // unspecified number of buckets is used otherwise.  Optionally specify
        // a 'hashFunction' used to generate the hash values for the keys
        // contained in this unordered multimap.  If 'hashFunction' is not
        // supplied, a default-constructed object of the (template parameter)
        // type 'HASH' is used.  Optionally specify a key-equivalence functor
        // 'keyEqual' used to verify that two keys are equivalent.  If
        // 'keyEqual' is not supplied, a default-constructed object of the
        // (template parameter) type 'EQUAL' is used.  Optionally specify a
        // 'basicAllocator' used to supply memory.  If 'basicAllocator' is not
        // supplied, a default-constructed object of the (template parameter)
        // type 'ALLOCATOR' is used.  If the type 'ALLOCATOR' is
        // 'bsl::allocator' and 'basicAllocator' is not supplied, the currently
        // installed default allocator is used to supply memory.  This method
        // requires that the (template parameter) types 'KEY' and 'VALUE' both
        // be 'copy-insertable' into this unordered multimap (see {Requirements
        // on 'KEY' and 'VALUE'}).  Note that a 'bslma::Allocator *' can be
        // supplied for 'basicAllocator' if the type 'ALLOCATOR' is
        // 'bsl::allocator' (the default).
#endif

    ~unordered_multimap();
        // Destroy this object.

    // MANIPULATORS
    unordered_multimap& operator=(const unordered_multimap& rhs);
        // Assign to this object the value, hash function, and key-equivalence
        // comparator of the specified 'rhs' object, propagate to this object
        // the allocator of 'rhs' if the 'ALLOCATOR' type has trait
        // 'propagate_on_container_copy_assignment', and return a reference
        // providing modifiable access to this object.  If an exception is
        // thrown, '*this' is left in a valid but unspecified state.  This
        // method requires that the (template parameter) types 'KEY' and
        // 'VALUE' both be 'copy-assignable' and 'copy-insertable' into this
        // unordered multimap (see {Requirements on 'KEY' and 'VALUE'}).

    unordered_multimap&
    operator=(BloombergLP::bslmf::MovableRef<unordered_multimap> rhs)
        BSLS_KEYWORD_NOEXCEPT_SPECIFICATION(
                                AllocatorTraits::is_always_equal::value &&
                                std::is_nothrow_move_assignable<HASH>::value &&
                                std::is_nothrow_move_assignable<EQUAL>::value);
        // Assign to this object the value, hash function, and key-equivalence
        // comparator of the specified 'rhs' object, propagate to this object
        // the allocator of 'rhs' if the 'ALLOCATOR' type has trait
        // 'propagate_on_container_move_assignment', and return a reference
        // providing modifiable access to this object.  The contents of 'rhs'
        // are moved (in constant time) to this unordered multimap if
        // 'get_allocator() == rhs.get_allocator()' (after accounting for the
        // aforementioned trait); otherwise, all elements in this unordered
        // multimap are either destroyed or move-assigned to, and each
        // additional element in 'rhs' is move-inserted into this unordered
        // multimap.  'rhs' is left in a valid but unspecified state, and if an
        // exception is thrown, '*this' is left in a valid but unspecified
        // state.  This method requires that the (template parameter) types
        // 'KEY' and 'VALUE' both be 'move-assignable' and 'move-insertable'
        // into this unordered multimap (see {Requirements on 'KEY' and
        // 'VALUE'}).

#if defined(BSLS_COMPILERFEATURES_SUPPORT_GENERALIZED_INITIALIZERS)
    unordered_multimap& operator=(std::initializer_list<value_type> values);
        // Assign to this object the value resulting from first clearing this
        // unordered multimap and then inserting each 'value_type' object in
        // the specified 'values' initializer list, and return a reference
        // providing modifiable access to this object.  This method requires
        // that the (template parameter) types 'KEY' and 'VALUE' both be
        // 'copy-insertable' into this unordered multimap (see {Requirements on
        // 'KEY' and 'VALUE'}).
#endif

    iterator begin() BSLS_KEYWORD_NOEXCEPT;
        // Return an iterator providing modifiable access to the first
        // 'value_type' object (in the sequence of 'value_type' objects)
        // maintained by this unordered multimap, or the 'end' iterator if this
        // unordered multimap is empty.

    iterator end() BSLS_KEYWORD_NOEXCEPT;
        // Return an iterator providing modifiable access to the past-the-end
        // position in the sequence of 'value_type' objects maintained by this
        // unordered multimap.

    local_iterator begin(size_type index);
        // Return a local iterator providing modifiable access to the first
        // 'value_type' object in the sequence of 'value_type' objects of the
        // bucket having the specified 'index' in the array of buckets
        // maintained by this unordered multimap, or the 'end(index)' iterator
        // if the indexed bucket is empty.  The behavior is undefined unless
        // 'index < bucket_count()'.

    local_iterator end(size_type index);
        // Return a local iterator providing modifiable access to the
        // past-the-end position in the sequence of 'value_type' objects of the
        // bucket having the specified 'index' in the array of buckets
        // maintained by this unordered multimap.  The behavior is undefined
        // unless 'index < bucket_count()'.

    void clear() BSLS_KEYWORD_NOEXCEPT;
        // Remove all entries from this unordered multimap.  Note that this
        // object will be empty after this call, but allocated memory may be
        // retained for future use.

    template <class LOOKUP_KEY>
    typename enable_if<
           BloombergLP::bslmf::IsTransparentPredicate<HASH, LOOKUP_KEY>::value
        && BloombergLP::bslmf::IsTransparentPredicate<EQUAL,LOOKUP_KEY>::value,
                      pair<iterator, iterator> >::type
    equal_range(const LOOKUP_KEY& key)
        // Return a pair of iterators providing modifiable access to the
        // sequence of 'value_type' objects in this unordered multimap with a
        // key equivalent to the specified 'key', where the first iterator is
        // positioned at the start of the sequence, and the second is
        // positioned one past the end of the sequence.  If this unordered
        // multimap contains no 'value_type' objects with a key equivalent to
        // 'key', then the two returned iterators will have the same value.
        // The behavior is undefined unless 'key' is equivalent to the key of
        // the elements of at most one equivalent-key group in this unordered
        // multimap.
        //
        // Note: implemented inline due to Sun CC compilation error.
        {
            typedef bsl::pair<iterator, iterator> ResultType;
            HashTableLink *first;
            HashTableLink *last;
            d_impl.findRange(&first, &last, key);
            return ResultType(iterator(first), iterator(last));
        }

    pair<iterator, iterator> equal_range(const key_type& key);
        // Return a pair of iterators providing modifiable access to the
        // sequence of 'value_type' objects in this unordered multimap with a
        // key equivalent to the specified 'key', where the first iterator is
        // positioned at the start of the sequence, and the second is
        // positioned one past the end of the sequence.  If this unordered
        // multimap contains no 'value_type' objects with a key equivalent to
        // 'key', then the two returned iterators will have the same value.

    size_type erase(const key_type& key);
        // Remove from this unordered multimap all 'value_type' objects with a
        // key equivalent to the specified 'key', if such exist, and return the
        // number of objects erased; otherwise, if there are no 'value_type'
        // objects with a key equivalent to 'key', return 0 with no other
        // effect.  This method invalidates only iterators and references to
        // the removed element and previously saved values of the 'end()'
        // iterator, and preserves the relative order of the elements not
        // removed.

    iterator erase(const_iterator position);
    iterator erase(iterator position);
        // Remove from this unordered multimap the 'value_type' object at the
        // specified 'position', and return an iterator referring to the
        // element immediately following the removed element, or to the
        // past-the-end position if the removed element was the last element in
        // the sequence of elements maintained by this unordered multimap.
        // This method invalidates only iterators and references to the removed
        // element and previously saved values of the 'end()' iterator, and
        // preserves the relative order of the elements not removed.  The
        // behavior is undefined unless 'position' refers to a 'value_type'
        // object in this unordered multimap.

    iterator erase(const_iterator first, const_iterator last);
        // Remove from this unordered multimap the 'value_type' objects
        // starting at the specified 'first' position up to, but not including,
        // the specified 'last' position, and return 'last'.  This method
        // invalidates only iterators and references to the removed element and
        // previously saved values of the 'end()' iterator, and preserves the
        // relative order of the elements not removed.  The behavior is
        // undefined unless 'first' and 'last' either refer to elements in this
        // unordered multimap or are the 'end' iterator, and the 'first'
        // position is at or before the 'last' position in the sequence
        // provided by this container.

    template <class LOOKUP_KEY>
    typename enable_if<
           BloombergLP::bslmf::IsTransparentPredicate<HASH, LOOKUP_KEY>::value
        && BloombergLP::bslmf::IsTransparentPredicate<EQUAL,LOOKUP_KEY>::value,
                      iterator>::type
    find(const LOOKUP_KEY& key)
        // Return an iterator providing modifiable access to the first
        // 'value_type' object in the sequence of all the 'value_type' objects
        // of this unordered multimap with a key equivalent to the specified
        // 'key', if such entries exist, and the past-the-end ('end') iterator
        // otherwise.  The behavior is undefined unless 'key' is equivalent to
        // the key of the elements of at most one equivalent-key group in this
        // unordered multimap.
        //
        // Note: implemented inline due to Sun CC compilation error.
        {
            return iterator(d_impl.find(key));
        }

    iterator find(const key_type& key);
        // Return an iterator providing modifiable access to the first
        // 'value_type' object in the sequence of all the 'value_type' objects
        // of this unordered multimap with a key equivalent to the specified
        // 'key', if such entries exist, and the past-the-end ('end') iterator
        // otherwise.

    iterator insert(const value_type& value);
        // Insert the specified 'value' into this unordered multimap, and
        // return an iterator referring to the newly inserted 'value_type'
        // object.  This method requires that the (template parameter) types
        // 'KEY' and 'VALUE' both be 'copy-insertable' into this unordered
        // multimap (see {Requirements on 'KEY' and 'VALUE'}).

#if defined(BSLS_PLATFORM_CMP_SUN) && BSLS_PLATFORM_CMP_VERSION < 0x5130
    template <class ALT_VALUE_TYPE>
    iterator
#elif !defined(BSLS_COMPILERFEATURES_SUPPORT_TRAITS_HEADER)
    template <class ALT_VALUE_TYPE>
    typename enable_if<is_convertible<ALT_VALUE_TYPE, value_type>::value,
                       iterator>::type
#else
    template <class ALT_VALUE_TYPE>
    typename enable_if<std::is_constructible<value_type,
                                             ALT_VALUE_TYPE&&>::value,
                       iterator>::type
#endif
    insert(BSLS_COMPILERFEATURES_FORWARD_REF(ALT_VALUE_TYPE) value)
        // Insert into this unordered multimap a 'value_type' object created
        // from the specified 'value', and return an iterator referring to the
        // newly inserted 'value_type' object.  This method requires that the
        // (template parameter) types 'KEY' and 'VALUE' both be
        // 'move-insertable' into this unordered multimap (see {Requirements on
        // 'KEY' and 'VALUE'}), and the 'value_type' be constructible from the
        // (template parameter) 'ALT_VALUE_TYPE'.
    {
        // Note that some compilers fail when this method is defined
        // out-of-line.

        return emplace(BSLS_COMPILERFEATURES_FORWARD(ALT_VALUE_TYPE, value));
    }

    iterator insert(const_iterator hint, const value_type& value);
        // Insert the specified 'value' into this unordered multimap (in
        // constant time if the specified 'hint' refers to an element in this
        // container with a key equivalent to the key of 'value'), and return
        // an iterator referring to the newly inserted 'value_type' object.  If
        // 'hint' does not refer to an element in this container with a key
        // equivalent to the key of 'value', this operation has worst case
        // 'O[N]' and average case constant-time complexity, where 'N' is the
        // size of this unordered multimap.  This method requires that the
        // (template parameter) types 'KEY' and 'VALUE' both be
        // 'copy-insertable' into this unordered multimap (see {Requirements on
        // 'KEY' and 'VALUE'}).  The behavior is undefined unless 'hint' is an
        // iterator in the range '[begin() .. end()]' (both endpoints
        // included).

#if defined(BSLS_PLATFORM_CMP_SUN) && BSLS_PLATFORM_CMP_VERSION < 0x5130
    template <class ALT_VALUE_TYPE>
    iterator
#elif !defined(BSLS_COMPILERFEATURES_SUPPORT_TRAITS_HEADER)
    template <class ALT_VALUE_TYPE>
    typename enable_if<is_convertible<ALT_VALUE_TYPE, value_type>::value,
                       iterator>::type
#else
    template <class ALT_VALUE_TYPE>
    typename enable_if<std::is_constructible<value_type,
                                             ALT_VALUE_TYPE&&>::value,
                       iterator>::type
#endif
    insert(const_iterator                                    hint,
           BSLS_COMPILERFEATURES_FORWARD_REF(ALT_VALUE_TYPE) value)
        // Insert into this unordered multimap a 'value_type' object created
        // from the specified 'value' (in constant time if the specified 'hint'
        // refers to an element in this container with a key equivalent to the
        // key of 'value'), and return an iterator referring to the newly
        // inserted 'value_type' object.  If 'hint' does not refer to an
        // element in this container with a key equivalent to the key of
        // 'value', this operation has worst case 'O[N]' and average case
        // constant-time complexity, where 'N' is the size of this unordered
        // multimap.  This method requires that the (template parameter) types
        // 'KEY' and 'VALUE' both be 'move-insertable' into this unordered
        // multimap (see {Requirements on 'KEY' and 'VALUE'}), and the
        // 'value_type' be constructible from the (template parameter)
        // 'ALT_VALUE_TYPE'.  The behavior is undefined unless 'hint' is an
        // iterator in the range '[begin() .. end()]' (both endpoints
        // included).
    {
        // Note that some compilers fail when this method is defined
        // out-of-line.

        return emplace_hint(hint,
                        BSLS_COMPILERFEATURES_FORWARD(ALT_VALUE_TYPE, value));
    }

    template <class INPUT_ITERATOR>
    void insert(INPUT_ITERATOR first, INPUT_ITERATOR last);
        // Insert into this unordered multimap the value of each 'value_type'
        // object in the range starting at the specified 'first' iterator and
        // ending immediately before the specified 'last' iterator.  The
        // (template parameter) type 'INPUT_ITERATOR' shall meet the
        // requirements of an input iterator defined in the C++11 standard
        // [24.2.3] providing access to values of a type convertible to
        // 'value_type', and 'value_type' must be 'emplace-constructible' from
        // '*i' into this unordered multimap, where 'i' is a dereferenceable
        // iterator in the range '[first .. last)' (see {Requirements on 'KEY'
        // and 'VALUE'}).  The behavior is undefined unless 'first' and 'last'
        // refer to a sequence of valid values where 'first' is at a position
        // at or before 'last'.

#if defined(BSLS_COMPILERFEATURES_SUPPORT_GENERALIZED_INITIALIZERS)
    void insert(std::initializer_list<value_type> values);
        // Insert into this unordered multimap the value of each 'value_type'
        // object in the specified 'values' initializer list.  This method
        // requires that the (template parameter) types 'KEY' and 'VALUE' both
        // be 'copy-insertable' into this unordered multimap (see {Requirements
        // on 'KEY' and 'VALUE'}).
#endif

#if BSLS_COMPILERFEATURES_SIMULATE_VARIADIC_TEMPLATES
// {{{ BEGIN GENERATED CODE
// Command line: sim_cpp11_features.pl bslstl_unorderedmultimap.h
#ifndef BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT
#define BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT 2
#endif
#ifndef BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A
#define BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT
#endif
#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 0
    iterator emplace();
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 0

#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 1
    template <class Args_1>
    iterator emplace(BSLS_COMPILERFEATURES_FORWARD_REF(Args_1) args_1);
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 1

#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 2
    template <class Args_1,
              class Args_2>
    iterator emplace(BSLS_COMPILERFEATURES_FORWARD_REF(Args_1) args_1,
                     BSLS_COMPILERFEATURES_FORWARD_REF(Args_2) args_2);
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 2


#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 0
    iterator emplace_hint(const_iterator hint);
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 0

#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 1
    template <class Args_1>
    iterator emplace_hint(const_iterator hint,
                             BSLS_COMPILERFEATURES_FORWARD_REF(Args_1) args_1);
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 1

#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 2
    template <class Args_1,
              class Args_2>
    iterator emplace_hint(const_iterator hint,
                             BSLS_COMPILERFEATURES_FORWARD_REF(Args_1) args_1,
                             BSLS_COMPILERFEATURES_FORWARD_REF(Args_2) args_2);
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_A >= 2

#else
// The generated code below is a workaround for the absence of perfect
// forwarding in some compilers.
    template <class... Args>
    iterator emplace(BSLS_COMPILERFEATURES_FORWARD_REF(Args)... args);

    template <class... Args>
    iterator emplace_hint(const_iterator hint,
                              BSLS_COMPILERFEATURES_FORWARD_REF(Args)... args);

// }}} END GENERATED CODE
#endif

    void max_load_factor(float newLoadFactor);
        // Set the maximum load factor of this container to the specified
        // 'newLoadFactor'.

    void rehash(size_type numBuckets);
        // Change the size of the array of buckets maintained by this container
        // to the specified 'numBuckets', and redistribute all the contained
        // elements into the new sequence of buckets, according to their hash
        // values.  Note that this operation has no effect if rehashing the
        // elements into 'numBuckets' would cause this unordered multimap to
        // exceed its 'max_load_factor'.

    void reserve(size_type numElements);
        // Increase the number of buckets of this unordered multimap to a
        // quantity such that the ratio between the specified 'numElements' and
        // the new number of buckets does not exceed 'max_load_factor'.  Note
        // that this guarantees that, after the reserve, elements can be
        // inserted to grow the container to 'size() == numElements' without
        // rehashing.  Also note that memory allocations may still occur when
        // growing the container to 'size() == numElements'.  Also note that
        // this operation has no effect if 'numElements <= size()'.

    void swap(unordered_multimap& other) BSLS_KEYWORD_NOEXCEPT_SPECIFICATION(
                                     AllocatorTraits::is_always_equal::value &&
                                     bsl::is_nothrow_swappable<HASH>::value &&
                                     bsl::is_nothrow_swappable<EQUAL>::value);
        // Exchange the value, hasher, key-equality functor, and
        // 'max_load_factor' of this object with those of the specified 'other'
        // object; also exchange the allocator of this object with that of
        // 'other' if the (template parameter) type 'ALLOCATOR' has the
        // 'propagate_on_container_swap' trait, and do not modify either
        // allocator otherwise.  This method provides the no-throw
        // exception-safety guarantee if and only if both the (template
        // parameter) types 'HASH' and 'EQUAL' provide no-throw swap
        // operations; if an exception is thrown, both objects are left in
        // valid but unspecified states.  This operation guarantees 'O[1]'
        // complexity.  The behavior is undefined unless either this object was
        // created with the same allocator as 'other' or 'ALLOCATOR' has the
        // 'propagate_on_container_swap' trait.

    // ACCESSORS
    allocator_type get_allocator() const BSLS_KEYWORD_NOEXCEPT;
        // Return (a copy of) the allocator used for memory allocation by this
        // unordered multimap.

    const_iterator  begin() const BSLS_KEYWORD_NOEXCEPT;
    const_iterator cbegin() const BSLS_KEYWORD_NOEXCEPT;
        // Return an iterator providing non-modifiable access to the first
        // 'value_type' object in the sequence of 'value_type' objects
        // maintained by this unordered multimap, or the 'end' iterator if this
        // unordered multimap is empty.

    const_iterator  end() const BSLS_KEYWORD_NOEXCEPT;
    const_iterator cend() const BSLS_KEYWORD_NOEXCEPT;
        // Return an iterator providing non-modifiable access to the
        // past-the-end position in the sequence of 'value_type' objects
        // maintained by this unordered multimap.

    bool empty() const BSLS_KEYWORD_NOEXCEPT;
        // Return 'true' if this unordered multimap contains no elements, and
        // 'false' otherwise.

    size_type size() const BSLS_KEYWORD_NOEXCEPT;
        // Return the number of elements in this unordered multimap.

    size_type max_size() const BSLS_KEYWORD_NOEXCEPT;
        // Return a theoretical upper bound on the largest number of elements
        // that this unordered multimap could possibly hold.  Note that there
        // is no guarantee that the unordered multimap can successfully grow to
        // the returned size, or even close to that size without running out of
        // resources.

    EQUAL key_eq() const;
        // Return (a copy of) the key-equivalence binary functor that returns
        // 'true' if the value of two 'key_type' objects are equivalent, and
        // 'false' otherwise.

    HASH hash_function() const;
        // Return (a copy of) the hash unary functor used by this unordered
        // multimap to generate a hash value (of type 'size_type') for a
        // 'key_type' object.

    template <class LOOKUP_KEY>
    typename enable_if<
           BloombergLP::bslmf::IsTransparentPredicate<HASH, LOOKUP_KEY>::value
        && BloombergLP::bslmf::IsTransparentPredicate<EQUAL,LOOKUP_KEY>::value,
                      const_iterator>::type
    find(const LOOKUP_KEY& key) const
        // Return an iterator providing modifiable access to the first
        // 'value_type' object in this unordered multimap whose key is
        // equivalent to the specified 'key', if such an entry exists, and the
        // past-the-end ('end') iterator otherwise.  The behavior is undefined
        // unless 'key' is equivalent to the key of the elements of at most one
        // equivalent-key group in this unordered multimap.
        //
        // Note: implemented inline due to Sun CC compilation error.
        {
            return const_iterator(d_impl.find(key));
        }

    const_iterator find(const key_type& key) const;
        // Return an iterator providing non-modifiable access to the first
        // 'value_type' object in the sequence of 'value_type' objects of this
        // unordered multimap with a key equivalent to the specified 'key', if
        // such entries exist, and the past-the-end ('end') iterator otherwise.

    template <class LOOKUP_KEY>
    typename enable_if<
           BloombergLP::bslmf::IsTransparentPredicate<HASH, LOOKUP_KEY>::value
        && BloombergLP::bslmf::IsTransparentPredicate<EQUAL,LOOKUP_KEY>::value,
                      size_type>::type
    count(const LOOKUP_KEY& key) const
        // Return the number of 'value_type' objects in this unordered multimap
        // with a key equivalent to the specified 'key'.  The behavior is
        // undefined unless 'key' is equivalent to the key of the elements of
        // at most one equivalent-key group in this unordered multimap.
        //
        // Note: implemented inline due to Sun CC compilation error.
        {
            typedef ::BloombergLP::bslalg::BidirectionalNode<value_type> BNode;

            size_type result = 0;
            for (HashTableLink *cursor = d_impl.find(key);
                 cursor;
                 ++result, cursor = cursor->nextLink())
            {
                BNode *cursorNode = static_cast<BNode *>(cursor);
                if (!this->key_eq()(
                         key,
                         ListConfiguration::extractKey(cursorNode->value()))) {

                    break;
                }
            }
            return result;
        }

    size_type count(const key_type& key) const;
        // Return the number of 'value_type' objects in this unordered multimap
        // with a key equivalent to the specified 'key'.

    template <class LOOKUP_KEY>
    typename enable_if<
           BloombergLP::bslmf::IsTransparentPredicate<HASH, LOOKUP_KEY>::value
        && BloombergLP::bslmf::IsTransparentPredicate<EQUAL,LOOKUP_KEY>::value,
                      pair<const_iterator, const_iterator> >::type
    equal_range(const LOOKUP_KEY& key) const
        // Return a pair of iterators providing non-modifiable access to the
        // sequence of 'value_type' objects in this unordered multimap with a
        // key equivalent to the specified 'key', where the first iterator is
        // positioned at the start of the sequence, and the second is
        // positioned one past the end of the sequence.  If this unordered
        // multimap contains no 'value_type' objects with a key equivalent to
        // 'key', then the two returned iterators will have the same value.
        // The behavior is undefined unless 'key' is equivalent to the key of
        // the elements of at most one equivalent-key group in this unordered
        // multimap.
        //
        // Note: implemented inline due to Sun CC compilation error.
        {
            typedef bsl::pair<const_iterator, const_iterator> ResultType;
            HashTableLink *first;
            HashTableLink *last;
            d_impl.findRange(&first, &last, key);
            return ResultType(const_iterator(first), const_iterator(last));
        }

    pair<const_iterator, const_iterator> equal_range(
                                                    const key_type& key) const;
        // Return a pair of iterators providing non-modifiable access to the
        // sequence of 'value_type' objects in this unordered multimap with a
        // key equivalent to the specified 'key', where the first iterator is
        // positioned at the start of the sequence, and the second is
        // positioned one past the end of the sequence.  If this unordered
        // multimap contains no 'value_type' objects with a key equivalent to
        // 'key', then the two returned iterators will have the same value.

    const_local_iterator  begin(size_type index) const;
    const_local_iterator cbegin(size_type index) const;
        // Return a local iterator providing non-modifiable access to the first
        // 'value_type' object (in the sequence of 'value_type' objects) of the
        // bucket having the specified 'index' in the array of buckets
        // maintained by this unordered multimap, or the 'end(index)' iterator
        // if the indexed bucket is empty.  The behavior is undefined unless
        // 'index < bucket_count()'.

    const_local_iterator  end(size_type index) const;
    const_local_iterator cend(size_type index) const;
        // Return a local iterator providing non-modifiable access to the
        // past-the-end position (in the sequence of 'value_type' objects) of
        // the bucket having the specified 'index' in the array of buckets
        // maintained by this unordered multimap.  The behavior is undefined
        // unless 'index < bucket_count()'.

    size_type bucket(const key_type& key) const;
        // Return the index of the bucket, in the array of buckets of this
        // container, where a value with a key equivalent to the specified
        // 'key' would be inserted.

    size_type bucket_count() const BSLS_KEYWORD_NOEXCEPT;
        // Return the number of buckets in the array of buckets maintained by
        // this unordered multimap.

    size_type max_bucket_count() const BSLS_KEYWORD_NOEXCEPT;
        // Return a theoretical upper bound on the largest number of buckets
        // that this container could possibly manage.  Note that there is no
        // guarantee that the unordered multimap can successfully grow to the
        // returned size, or even close to that size without running out of
        // resources.

    size_type bucket_size(size_type index) const;
        // Return the number of elements contained in the bucket at the
        // specified 'index' in the array of buckets maintained by this
        // container.  The behavior is undefined unless
        // 'index < bucket_count()'.

    float load_factor() const BSLS_KEYWORD_NOEXCEPT;
        // Return the current ratio between the 'size' of this container and
        // the number of buckets.  The load factor is a measure of how full the
        // container is, and a higher load factor typically leads to an
        // increased number of collisions, thus resulting in a loss of
        // performance.

    float max_load_factor() const BSLS_KEYWORD_NOEXCEPT;
        // Return the maximum load factor allowed for this container.  Note
        // that if an insert operation would cause the load factor to exceed
        // the 'max_load_factor', that same insert operation will increase the
        // number of buckets and rehash the elements of the container into
        // those buckets (see 'rehash').
};

#ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
// CLASS TEMPLATE DEDUCTION GUIDES

template <
    class INPUT_ITERATOR,
    class KEY = BloombergLP::bslstl::IteratorUtil::IterKey_t<INPUT_ITERATOR>,
    class VALUE =
               BloombergLP::bslstl::IteratorUtil::IterMapped_t<INPUT_ITERATOR>,
    class HASH = bsl::hash<KEY>,
    class EQUAL = bsl::equal_to<KEY>,
    class ALLOCATOR = bsl::allocator<pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<std::is_invocable_v<HASH, const KEY &>>,
    class = bsl::enable_if_t<
                         std::is_invocable_v<EQUAL, const KEY &, const KEY &>>,
    class = bsl::enable_if_t<bsl::IsStdAllocator_v<ALLOCATOR>>
    >
unordered_multimap(INPUT_ITERATOR,
                   INPUT_ITERATOR,
                   typename bsl::allocator_traits<ALLOCATOR>::size_type = 0,
                   HASH = HASH(),
                   EQUAL = EQUAL(),
                   ALLOCATOR = ALLOCATOR())
-> unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the iterators supplied to the constructor of 'unordered_multimap'.
    // Deduce the template parameters 'HASH', 'EQUAL' and 'ALLOCATOR' from the
    // other parameters passed to the constructor of 'unordered_multimap'.
    //  This deduction guide does not participate unless the supplied allocator
    // meets the requirements of a standard allocator.

template <
    class INPUT_ITERATOR,
    class HASH,
    class EQUAL,
    class ALLOC,
    class KEY = BloombergLP::bslstl::IteratorUtil::IterKey_t<INPUT_ITERATOR>,
    class VALUE =
               BloombergLP::bslstl::IteratorUtil::IterMapped_t<INPUT_ITERATOR>,
    class DEFAULT_ALLOCATOR = bsl::allocator<pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<bsl::is_convertible_v<ALLOC *, DEFAULT_ALLOCATOR>>
    >
unordered_multimap(
    INPUT_ITERATOR,
    INPUT_ITERATOR,
    typename bsl::allocator_traits<DEFAULT_ALLOCATOR>::size_type,
    HASH,
    EQUAL,
    ALLOC *)
-> unordered_multimap<KEY, VALUE, HASH, EQUAL>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the iterators supplied to the constructor of 'unordered_multimap'.
    // Deduce the template parameters 'HASH' and "EQUAL' from the other
    // parameters passed to the constructor of 'unordered_multimap'.  This
    // deduction guide does not participate unless the supplied allocator is
    // convertible to 'bsl::allocator<bsl::pair<const KEY, VALUE>>'.

template <
    class INPUT_ITERATOR,
    class HASH,
    class ALLOCATOR,
    class KEY = BloombergLP::bslstl::IteratorUtil::IterKey_t<INPUT_ITERATOR>,
    class VALUE =
               BloombergLP::bslstl::IteratorUtil::IterMapped_t<INPUT_ITERATOR>,
    class = bsl::enable_if_t<std::is_invocable_v<HASH, const KEY &>>,
    class = bsl::enable_if_t<bsl::IsStdAllocator_v<ALLOCATOR>>
    >
unordered_multimap(INPUT_ITERATOR,
                   INPUT_ITERATOR,
                   typename bsl::allocator_traits<ALLOCATOR>::size_type,
                   HASH,
                   ALLOCATOR)
-> unordered_multimap<KEY, VALUE, HASH, bsl::equal_to<KEY>, ALLOCATOR>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the iterators supplied to the constructor of 'unordered_multimap'.
    // Deduce the template parameters 'HASH' and 'ALLOCATOR' from the other
    // parameters passed to the constructor of 'unordered_multimap'.  This
    // deduction guide does not participate unless the supplied hash is
    // invokable with a 'KEY', and the supplied allocator meets the
    // requirements of a standard allocator.

template <
    class INPUT_ITERATOR,
    class HASH,
    class ALLOC,
    class KEY = BloombergLP::bslstl::IteratorUtil::IterKey_t<INPUT_ITERATOR>,
    class VALUE =
               BloombergLP::bslstl::IteratorUtil::IterMapped_t<INPUT_ITERATOR>,
    class DEFAULT_ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<bsl::is_convertible_v<ALLOC *, DEFAULT_ALLOCATOR>>
    >
unordered_multimap(
    INPUT_ITERATOR,
    INPUT_ITERATOR,
    typename bsl::allocator_traits<DEFAULT_ALLOCATOR>::size_type,
    HASH,
    ALLOC *)
-> unordered_multimap<KEY, VALUE, HASH>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the iterators supplied to the constructor of 'unordered_multimap'.
    // Deduce the template parameter 'HASH' from the other parameters passed to
    // the constructor of 'unordered_multimap'.  This deduction guide does not
    // participate unless the supplied allocator is convertible to
    // 'bsl::allocator<bsl::pair<const KEY, VALUE>>'.

template <
    class INPUT_ITERATOR,
    class ALLOCATOR,
    class KEY = BloombergLP::bslstl::IteratorUtil::IterKey_t<INPUT_ITERATOR>,
    class VALUE =
               BloombergLP::bslstl::IteratorUtil::IterMapped_t<INPUT_ITERATOR>,
    class = bsl::enable_if_t<bsl::IsStdAllocator_v<ALLOCATOR>>
    >
unordered_multimap(INPUT_ITERATOR,
              INPUT_ITERATOR,
              typename bsl::allocator_traits<ALLOCATOR>::size_type,
              ALLOCATOR)
-> unordered_multimap<KEY,
                      VALUE,
                      bsl::hash<KEY>,
                      bsl::equal_to<KEY>,
                      ALLOCATOR>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the iterators supplied to the constructor of 'unordered_multimap'.
    // This deduction guide does not participate unless the supplied allocator
    // meets the requirements of a standard allocator.

template <
    class INPUT_ITERATOR,
    class ALLOC,
    class KEY = BloombergLP::bslstl::IteratorUtil::IterKey_t<INPUT_ITERATOR>,
    class VALUE =
               BloombergLP::bslstl::IteratorUtil::IterMapped_t<INPUT_ITERATOR>,
    class DEFAULT_ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<bsl::is_convertible_v<ALLOC *, DEFAULT_ALLOCATOR>>
    >
unordered_multimap(
    INPUT_ITERATOR,
    INPUT_ITERATOR,
    typename bsl::allocator_traits<DEFAULT_ALLOCATOR>::size_type,
    ALLOC *)
-> unordered_multimap<KEY, VALUE>;
    // of the iterators supplied to the constructor of 'unordered_multimap'.
    // Deduce the template parameter 'ALLOCATOR' from the other parameter
    // passed to the constructor of 'unordered_multimap'.  This deduction guide
    // does not participate unless the supplied allocator meets the
    // requirements of a standard allocator.

template <
    class INPUT_ITERATOR,
    class ALLOCATOR,
    class KEY = BloombergLP::bslstl::IteratorUtil::IterKey_t<INPUT_ITERATOR>,
    class VALUE =
               BloombergLP::bslstl::IteratorUtil::IterMapped_t<INPUT_ITERATOR>,
    class = bsl::enable_if_t<bsl::IsStdAllocator_v<ALLOCATOR>>
    >
unordered_multimap(INPUT_ITERATOR, INPUT_ITERATOR, ALLOCATOR)
-> unordered_multimap<KEY,
                      VALUE,
                      bsl::hash<KEY>,
                      bsl::equal_to<KEY>,
                      ALLOCATOR>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the iterators supplied to the constructor of 'unordered_multimap'.
    // Deduce the template parameter 'ALLOCATOR' from the other parameter
    // passed to the constructor of 'unordered_multimap'.  This deduction guide
    // does not participate unless the supplied allocator meets the
    // requirements of a standard allocator.

template <
    class INPUT_ITERATOR,
    class ALLOC,
    class KEY = BloombergLP::bslstl::IteratorUtil::IterKey_t<INPUT_ITERATOR>,
    class VALUE =
               BloombergLP::bslstl::IteratorUtil::IterMapped_t<INPUT_ITERATOR>,
    class DEFAULT_ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<bsl::is_convertible_v<ALLOC *, DEFAULT_ALLOCATOR>>
    >
unordered_multimap(INPUT_ITERATOR, INPUT_ITERATOR, ALLOC *)
-> unordered_multimap<KEY, VALUE>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the iterators supplied to the constructor of 'unordered_multimap'.
    // This deduction guide does not participate unless the supplied allocator
    // is convertible to 'bsl::allocator<bsl::pair<const KEY, VALUE>>'.

template <
    class KEY,
    class VALUE,
    class HASH = bsl::hash<KEY>,
    class EQUAL = bsl::equal_to<KEY>,
    class ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<std::is_invocable_v<HASH, const KEY &>>,
    class = bsl::enable_if_t<
                         std::is_invocable_v<EQUAL, const KEY &, const KEY &>>,
    class = bsl::enable_if_t<bsl::IsStdAllocator_v<ALLOCATOR>>
    >
unordered_multimap(std::initializer_list<bsl::pair<const KEY, VALUE>>,
                   typename bsl::allocator_traits<ALLOCATOR>::size_type = 0,
                   HASH      = HASH(),
                   EQUAL     = EQUAL(),
                   ALLOCATOR = ALLOCATOR())
-> unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the initializer_list supplied to the constructor of
    // 'unordered_multimap'.  Deduce the template parameters 'HASH', 'EQUAL'
    // and 'ALLOCATOR' from the other parameters supplied to the constructor of
    // 'unordered_multimap'.  This deduction guide does not participate unless:
    // (1) the supplied 'HASH' is invokable with a 'KEY', (2) the supplied
    // 'EQUAL' is invokable with two 'KEY's, and (3) the supplied allocator
    // meets the requirements of a standard allocator.

template <
    class KEY,
    class VALUE,
    class HASH,
    class EQUAL,
    class ALLOC,
    class DEFAULT_ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<bsl::is_convertible_v<ALLOC *, DEFAULT_ALLOCATOR>>
    >
unordered_multimap(
    std::initializer_list<bsl::pair<const KEY, VALUE>>,
    typename bsl::allocator_traits<DEFAULT_ALLOCATOR>::size_type,
    HASH,
    EQUAL,
    ALLOC *)
-> unordered_multimap<KEY, VALUE, HASH, EQUAL>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the initializer_list supplied to the constructor of
    // 'unordered_multimap'.  Deduce the template parameters 'HASH', 'EQUAL'
    // and 'ALLOCATOR' from the other parameters supplied to the constructor of
    // 'unordered_multimap'. This deduction guide does not participate unless
    // the supplied allocator is convertible to
    // 'bsl::allocator<bsl::pair<const KEY, VALUE>>'.

template <
    class KEY,
    class VALUE,
    class HASH,
    class ALLOCATOR,
    class = bsl::enable_if_t<std::is_invocable_v<HASH, const KEY &>>,
    class = bsl::enable_if_t<bsl::IsStdAllocator_v<ALLOCATOR>>
    >
unordered_multimap(std::initializer_list<bsl::pair<const KEY, VALUE>>,
                   typename bsl::allocator_traits<ALLOCATOR>::size_type,
                   HASH,
                   ALLOCATOR)
-> unordered_multimap<KEY, VALUE, HASH, bsl::equal_to<KEY>, ALLOCATOR>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the initializer_list supplied to the constructor of
    // 'unordered_multimap'.  Deduce the template parameters 'HASH' and
    // 'ALLOCATOR' from the other parameters supplied to the constructor of
    // 'unordered_multimap'.  This deduction guide does not participate unless
    // the supplied 'HASH' is invokable with a 'KEY', and the supplied
    // allocator meets the requirements of a standard allocator.

template <
    class KEY,
    class VALUE,
    class HASH,
    class ALLOC,
    class DEFAULT_ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<bsl::is_convertible_v<ALLOC *, DEFAULT_ALLOCATOR>>
    >
unordered_multimap(
    std::initializer_list<bsl::pair<const KEY, VALUE>>,
    typename bsl::allocator_traits<DEFAULT_ALLOCATOR>::size_type,
    HASH,
    ALLOC *)
-> unordered_multimap<KEY, VALUE, HASH>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the initializer_list supplied to the constructor of
    // 'unordered_multimap'.  Deduce the template parameter 'HASH' from the
    // other parameters supplied to the constructor of 'unordered_multimap'.
    // This deduction guide does not participate unless the supplied allocator
    // is convertible to 'bsl::allocator<bsl::pair<const KEY, VALUE>>'.

template <
    class KEY,
    class VALUE,
    class ALLOCATOR,
    class = bsl::enable_if_t<bsl::IsStdAllocator_v<ALLOCATOR>>
    >
unordered_multimap(std::initializer_list<bsl::pair<const KEY, VALUE>>,
                   typename bsl::allocator_traits<ALLOCATOR>::size_type,
                   ALLOCATOR)
-> unordered_multimap<KEY,
                      VALUE,
                      bsl::hash<KEY>,
                      bsl::equal_to<KEY>,
                      ALLOCATOR>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the initializer_list supplied to the constructor of
    // 'unordered_multimap'.  This deduction guide does not participate unless
    // the supplied allocator meets the requirements of a standard allocator.

template <
    class KEY,
    class VALUE,
    class ALLOC,
    class DEFAULT_ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<bsl::is_convertible_v<ALLOC *, DEFAULT_ALLOCATOR>>
    >
unordered_multimap(
    std::initializer_list<bsl::pair<const KEY, VALUE>>,
    typename bsl::allocator_traits<DEFAULT_ALLOCATOR>::size_type,
    ALLOC *)
-> unordered_multimap<KEY, VALUE>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the initializer_list supplied to the constructor of
    // 'unordered_multimap'.  This deduction guide does not participate unless
    // the supplied allocator is convertible to
    // 'bsl::allocator<bsl::pair<const KEY, VALUE>>'.

template <
    class KEY,
    class VALUE,
    class ALLOCATOR,
    class = bsl::enable_if_t<bsl::IsStdAllocator_v<ALLOCATOR>>
    >
unordered_multimap(std::initializer_list<bsl::pair<const KEY, VALUE>>,
                   ALLOCATOR)
-> unordered_multimap<KEY,
                      VALUE,
                      bsl::hash<KEY>,
                      bsl::equal_to<KEY>,
                      ALLOCATOR>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the initializer_list supplied to the constructor of
    // 'unordered_multimap'.  Deduce the template parameter 'ALLOCATOR' from
    // the other parameters supplied to the constructor of
    // 'unordered_multimap'.  This deduction guide does not participate unless
    // the supplied allocator meets the requirements of a standard allocator.

template <
    class KEY,
    class VALUE,
    class ALLOC,
    class DEFAULT_ALLOCATOR = bsl::allocator<bsl::pair<const KEY, VALUE>>,
    class = bsl::enable_if_t<bsl::is_convertible_v<ALLOC *, DEFAULT_ALLOCATOR>>
    >
unordered_multimap(std::initializer_list<bsl::pair<const KEY, VALUE>>, ALLOC *)
-> unordered_multimap<KEY, VALUE>;
    // Deduce the template parameters 'KEY' and 'VALUE' from the 'value_type'
    // of the initializer_list supplied to the constructor of
    // 'unordered_multimap'.  This deduction guide does not participate unless
    // the supplied allocator is convertible to
    // 'bsl::allocator<bsl::pair<const KEY, VALUE>>'.
#endif

// FREE OPERATORS
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
bool operator==(
            const unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& lhs,
            const unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& rhs);
    // Return 'true' if the specified 'lhs' and 'rhs' objects have the same
    // value, and 'false' otherwise.  Two 'unordered_multimap' objects have the
    // same value if they have the same number of key-value pairs, and each
    // key-value pair that is contained in one of the objects is also contained
    // in the other object.  This method requires that the (template parameter)
    // types 'KEY' and 'VALUE' both be 'equality-comparable' (see {Requirements
    // on 'KEY' and 'VALUE'}).

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
bool operator!=(
            const unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& lhs,
            const unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& rhs);
    // Return 'true' if the specified 'lhs' and 'rhs' objects do not have the
    // same value, and 'false' otherwise.  Two 'unordered_multimap' objects do
    // not have the same value if they do not have the same number of key-value
    // pairs, or some key-value pair that is contained in one of the objects is
    // not also contained in the other object.  This method requires that the
    // (template parameter) types 'KEY' and 'VALUE' both be
    // 'equality-comparable' (see {Requirements on 'KEY' and 'VALUE'}).

// FREE FUNCTIONS
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
void swap(unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& a,
          unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& b)
                                    BSLS_KEYWORD_NOEXCEPT_SPECIFICATION(false);
    // Exchange the value, hasher, key-equality functor, and 'max_load_factor'
    // of the specified 'a' object with those of the specified 'b' object; also
    // exchange the allocator of 'a' with that of 'b' if the (template
    // parameter) type 'ALLOCATOR' has the 'propagate_on_container_swap' trait,
    // and do not modify either allocator otherwise.  This function provides
    // the no-throw exception-safety guarantee if and only if both the
    // (template parameter) types 'HASH' and 'EQUAL' provide no-throw swap
    // operations; if an exception is thrown, both objects are left in valid
    // but unspecified states.  This operation guarantees 'O[1]' complexity.
    // The behavior is undefined unless either 'a' was created with the same
    // allocator as 'b' or 'ALLOCATOR' has the 'propagate_on_container_swap'
    // trait.

// ============================================================================
//                  TEMPLATE AND INLINE FUNCTION DEFINITIONS
// ============================================================================

                        //-------------------------
                        // class unordered_multimap
                        //-------------------------

// CREATORS
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap()
: d_impl(HASH(), EQUAL(), 0, 1.0f, ALLOCATOR())
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                            size_type        initialNumBuckets,
                                            const HASH&      hashFunction,
                                            const EQUAL&     keyEqual,
                                            const ALLOCATOR& basicAllocator)
: d_impl(hashFunction, keyEqual, initialNumBuckets, 1.0f, basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                            size_type        initialNumBuckets,
                                            const HASH&      hashFunction,
                                            const ALLOCATOR& basicAllocator)
: d_impl(hashFunction, EQUAL(), initialNumBuckets, 1.0f, basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                            size_type        initialNumBuckets,
                                            const ALLOCATOR& basicAllocator)
: d_impl(HASH(), EQUAL(), initialNumBuckets, 1.0f, basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                               const ALLOCATOR& basicAllocator)
: d_impl(basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                            const unordered_multimap& original)
: d_impl(original.d_impl,
         AllocatorTraits::select_on_container_copy_construction(
                                                     original.get_allocator()))
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                   BloombergLP::bslmf::MovableRef<unordered_multimap> original)
: d_impl(MoveUtil::move(MoveUtil::access(original).d_impl))
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                 const unordered_multimap&                      original,
                 const typename type_identity<ALLOCATOR>::type& basicAllocator)
: d_impl(original.d_impl, basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
             BloombergLP::bslmf::MovableRef<unordered_multimap> original,
             const typename type_identity<ALLOCATOR>::type&     basicAllocator)
: d_impl(MoveUtil::move(MoveUtil::access(original).d_impl), basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class INPUT_ITERATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                            INPUT_ITERATOR   first,
                                            INPUT_ITERATOR   last,
                                            size_type        initialNumBuckets,
                                            const HASH&      hashFunction,
                                            const EQUAL&     keyEqual,
                                            const ALLOCATOR& basicAllocator)
: d_impl(hashFunction, keyEqual, initialNumBuckets, 1.0f, basicAllocator)
{
    this->insert(first, last);
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class INPUT_ITERATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                            INPUT_ITERATOR   first,
                                            INPUT_ITERATOR   last,
                                            size_type        initialNumBuckets,
                                            const HASH&      hashFunction,
                                            const ALLOCATOR& basicAllocator)
: d_impl(hashFunction, EQUAL(), initialNumBuckets, 1.0f, basicAllocator)
{
    this->insert(first, last);
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class INPUT_ITERATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                            INPUT_ITERATOR   first,
                                            INPUT_ITERATOR   last,
                                            size_type        initialNumBuckets,
                                            const ALLOCATOR& basicAllocator)
: d_impl(HASH(), EQUAL(), initialNumBuckets, 1.0f, basicAllocator)
{
    this->insert(first, last);
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class INPUT_ITERATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                                               INPUT_ITERATOR   first,
                                               INPUT_ITERATOR   last,
                                               const ALLOCATOR& basicAllocator)
: d_impl(HASH(), EQUAL(), 0, 1.0f, basicAllocator)
{
    this->insert(first, last);
}

#if defined(BSLS_COMPILERFEATURES_SUPPORT_GENERALIZED_INITIALIZERS)
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
# ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
template <class, class, class>
# endif
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                           std::initializer_list<value_type> values,
                           size_type                         initialNumBuckets,
                           const HASH&                       hashFunction,
                           const EQUAL&                      keyEqual,
                           const ALLOCATOR&                  basicAllocator)
: unordered_multimap(values.begin(),
                     values.end(),
                     initialNumBuckets,
                     hashFunction,
                     keyEqual,
                     basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
# ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
template <class, class>
# endif
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                           std::initializer_list<value_type> values,
                           size_type                         initialNumBuckets,
                           const HASH&                       hashFunction,
                           const ALLOCATOR&                  basicAllocator)
: unordered_multimap(values.begin(),
                     values.end(),
                     initialNumBuckets,
                     hashFunction,
                     EQUAL(),
                     basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
# ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
template <class>
# endif
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                          std::initializer_list<value_type> values,
                          size_type                         initialNumBuckets,
                          const ALLOCATOR&                  basicAllocator)
: unordered_multimap(values.begin(),
                     values.end(),
                     initialNumBuckets,
                     HASH(),
                     EQUAL(),
                     basicAllocator)
{
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
# ifdef BSLS_COMPILERFEATURES_SUPPORT_CTAD
template <class>
# endif
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::unordered_multimap(
                          std::initializer_list<value_type> values,
                          const ALLOCATOR&                  basicAllocator)
: unordered_multimap(values.begin(),
                     values.end(),
                     0,
                     HASH(),
                     EQUAL(),
                     basicAllocator)
{
}
#endif  // defined(BSLS_COMPILERFEATURES_SUPPORT_GENERALIZED_INITIALIZERS)

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::~unordered_multimap()
{
    // All memory management is handled by the base 'd_impl' member.
}

// MANIPULATORS
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>&
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::operator=(
                                                 const unordered_multimap& rhs)
{
    // Note that we have delegated responsibility for correct handling of
    // allocator propagation to the 'HashTable' implementation.

    d_impl = rhs.d_impl;

    return *this;
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>&
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::operator=(
                        BloombergLP::bslmf::MovableRef<unordered_multimap> rhs)
    BSLS_KEYWORD_NOEXCEPT_SPECIFICATION(
                                AllocatorTraits::is_always_equal::value &&
                                std::is_nothrow_move_assignable<HASH>::value &&
                                std::is_nothrow_move_assignable<EQUAL>::value)
{
    // Note that we have delegated responsibility for correct handling of
    // allocator propagation to the 'HashTable' implementation.

    unordered_multimap& lvalue = rhs;

    d_impl = MoveUtil::move(lvalue.d_impl);

    return *this;
}

#if defined(BSLS_COMPILERFEATURES_SUPPORT_GENERALIZED_INITIALIZERS)
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>&
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::operator=(
                                      std::initializer_list<value_type> values)
{
    unordered_multimap tmp(values.begin(), values.end(), d_impl.allocator());

    d_impl.swap(tmp.d_impl);

    return *this;
}
#endif

#if BSLS_COMPILERFEATURES_SIMULATE_VARIADIC_TEMPLATES
// {{{ BEGIN GENERATED CODE
// Command line: sim_cpp11_features.pl bslstl_unorderedmultimap.h
#ifndef BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT
#define BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT 2
#endif
#ifndef BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B
#define BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT
#endif
#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 0
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::emplace(
                               )
{
    return iterator(d_impl.emplace(
                                ));

}
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 0

#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 1
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class Args_1>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::emplace(
                              BSLS_COMPILERFEATURES_FORWARD_REF(Args_1) args_1)
{
    return iterator(d_impl.emplace(
                               BSLS_COMPILERFEATURES_FORWARD(Args_1, args_1)));

}
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 1

#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 2
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class Args_1,
          class Args_2>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::emplace(
                              BSLS_COMPILERFEATURES_FORWARD_REF(Args_1) args_1,
                              BSLS_COMPILERFEATURES_FORWARD_REF(Args_2) args_2)
{
    return iterator(d_impl.emplace(
                               BSLS_COMPILERFEATURES_FORWARD(Args_1, args_1),
                               BSLS_COMPILERFEATURES_FORWARD(Args_2, args_2)));

}
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 2


#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 0
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::emplace_hint(
                                                           const_iterator hint)
{
    return iterator(d_impl.emplaceWithHint(hint.node()));
}
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 0

#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 1
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class Args_1>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::emplace_hint(
                                                           const_iterator hint,
                              BSLS_COMPILERFEATURES_FORWARD_REF(Args_1) args_1)
{
    return iterator(d_impl.emplaceWithHint(hint.node(),
                               BSLS_COMPILERFEATURES_FORWARD(Args_1, args_1)));
}
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 1

#if BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 2
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class Args_1,
          class Args_2>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::emplace_hint(
                                                           const_iterator hint,
                              BSLS_COMPILERFEATURES_FORWARD_REF(Args_1) args_1,
                              BSLS_COMPILERFEATURES_FORWARD_REF(Args_2) args_2)
{
    return iterator(d_impl.emplaceWithHint(hint.node(),
                               BSLS_COMPILERFEATURES_FORWARD(Args_1, args_1),
                               BSLS_COMPILERFEATURES_FORWARD(Args_2, args_2)));
}
#endif  // BSLSTL_UNORDEREDMULTIMAP_VARIADIC_LIMIT_B >= 2

#else
// The generated code below is a workaround for the absence of perfect
// forwarding in some compilers.
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class... Args>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::emplace(
                               BSLS_COMPILERFEATURES_FORWARD_REF(Args)... args)
{
    return iterator(d_impl.emplace(
                                BSLS_COMPILERFEATURES_FORWARD(Args, args)...));

}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class... Args>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::emplace_hint(
                                                           const_iterator hint,
                               BSLS_COMPILERFEATURES_FORWARD_REF(Args)... args)
{
    return iterator(d_impl.emplaceWithHint(hint.node(),
                                BSLS_COMPILERFEATURES_FORWARD(Args, args)...));
}
// }}} END GENERATED CODE
#endif

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::begin()
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return iterator(d_impl.elementListRoot());
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::end()
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return iterator();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::local_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::begin(size_type index)
{
    BSLS_ASSERT_SAFE(index < this->bucket_count());

    return local_iterator(&d_impl.bucketAtIndex(index));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::local_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::end(size_type index)
{
    BSLS_ASSERT_SAFE(index < this->bucket_count());

    return local_iterator(0, &d_impl.bucketAtIndex(index));
}


template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
void unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::clear()
                                                          BSLS_KEYWORD_NOEXCEPT
{
    d_impl.removeAll();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::find(
                                                           const key_type& key)
{
    return iterator(d_impl.find(key));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
bsl::pair<
     typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator,
     typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator>
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::equal_range(
                                                           const key_type& key)
{
    HashTableLink *first;
    HashTableLink *last;
    d_impl.findRange(&first, &last, key);
    return bsl::pair<iterator, iterator>(iterator(first), iterator(last));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::erase(
                                                       const_iterator position)
{
    BSLS_ASSERT(position != this->end());

    return iterator(d_impl.remove(position.node()));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::erase(
                                                             iterator position)
{
    return erase(const_iterator(position));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::size_type
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::erase(
                                                           const key_type& key)
{   // As an alternative implementation, the table could return an extracted
    // "slice" list from the underlying table, and now need merely:
    //   iterate each node, destroying the associated value
    //   reclaim each node (potentially returning to a node-pool)

    typedef ::BloombergLP::bslalg::BidirectionalNode<value_type> BNode;

    if (HashTableLink *target = d_impl.find(key)) {
        target = d_impl.remove(target);
        size_type result = 1;
        while (target &&
               this->key_eq()(key, ListConfiguration::extractKey(
                                    static_cast<BNode *>(target)->value()))) {
            target = d_impl.remove(target);
            ++result;
        }
        return result;                                                // RETURN
    }

    return 0;
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::erase(
                                                          const_iterator first,
                                                          const_iterator last)
{
#if defined BDE_BUILD_TARGET_SAFE_2
    if (first != last) {
        iterator it        = this->begin();
        const iterator end = this->end();
        for (; it != first; ++it) {
            BSLS_ASSERT(last != it);
            BSLS_ASSERT(end  != it);
        }
        for (; it != last; ++it) {
            BSLS_ASSERT(end  != it);
        }
    }
#endif

    while (first != last) {
        first = this->erase(first);
    }

    return iterator(first.node());          // convert from const_iterator
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::insert(
                                                       const value_type& value)
{
    return iterator(d_impl.insert(value));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::insert(
                                                       const_iterator    hint,
                                                       const value_type& value)
{
    return iterator(d_impl.insert(value, hint.node()));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
template <class INPUT_ITERATOR>
void unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::insert(
                                                          INPUT_ITERATOR first,
                                                          INPUT_ITERATOR last)
{
    difference_type maxInsertions =
              ::BloombergLP::bslstl::IteratorUtil::insertDistance(first, last);
    if (0 < maxInsertions) {
        this->reserve(this->size() + maxInsertions);
    }
    else {
        BSLS_ASSERT_SAFE(0 == maxInsertions);
    }

    while (first != last) {
        d_impl.emplace(*first);
        ++first;
    }
}

#if defined(BSLS_COMPILERFEATURES_SUPPORT_GENERALIZED_INITIALIZERS)
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
void unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::insert(
                                      std::initializer_list<value_type> values)
{
    insert(values.begin(), values.end());
}
#endif

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
void unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::max_load_factor(
                                                           float newLoadFactor)
{
    d_impl.setMaxLoadFactor(newLoadFactor);
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
void unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::rehash(
                                                          size_type numBuckets)
{
    d_impl.rehashForNumBuckets(numBuckets);
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
void unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::reserve(
                                                         size_type numElements)
{
    d_impl.reserveForNumElements(numElements);
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
void unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::swap(
                                                     unordered_multimap& other)
    BSLS_KEYWORD_NOEXCEPT_SPECIFICATION(
                                     AllocatorTraits::is_always_equal::value &&
                                     bsl::is_nothrow_swappable<HASH>::value &&
                                     bsl::is_nothrow_swappable<EQUAL>::value)
{
    d_impl.swap(other.d_impl);
}

// ACCESSORS
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
ALLOCATOR
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::get_allocator() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return d_impl.allocator();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::const_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::begin() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return const_iterator(d_impl.elementListRoot());
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::const_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::end() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return const_iterator();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::const_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::cbegin() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return const_iterator(d_impl.elementListRoot());
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::const_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::cend() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return const_iterator();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::
                                                           const_local_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::begin(
                                                         size_type index) const
{
    BSLS_ASSERT_SAFE(index < this->bucket_count());

    return const_local_iterator(&d_impl.bucketAtIndex(index));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::const_local_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::end(
                                                         size_type index) const
{
    BSLS_ASSERT_SAFE(index < this->bucket_count());

    return const_local_iterator(0, &d_impl.bucketAtIndex(index));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::const_local_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::cbegin(
                                                         size_type index) const
{
    BSLS_ASSERT_SAFE(index < this->bucket_count());

    return const_local_iterator(&d_impl.bucketAtIndex(index));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::
                                                           const_local_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::cend(
                                                         size_type index) const
{
    BSLS_ASSERT_SAFE(index < this->bucket_count());

    return const_local_iterator(0, &d_impl.bucketAtIndex(index));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::size_type
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::bucket(
                                                     const key_type& key) const
{
    return d_impl.bucketIndexForKey(key);
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::size_type
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::bucket_count() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return d_impl.numBuckets();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::size_type
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::bucket_size(
                                                         size_type index) const
{
    BSLS_ASSERT_SAFE(index < this->bucket_count());

    return d_impl.countElementsInBucket(index);
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>:: size_type
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::count(
                                                     const key_type& key) const
{
    typedef ::BloombergLP::bslalg::BidirectionalNode<value_type> BNode;

    size_type result = 0;
    for (HashTableLink *cursor = d_impl.find(key);
         cursor;
         ++result, cursor = cursor->nextLink())
    {
        BNode *cursorNode = static_cast<BNode *>(cursor);
        if (!this->key_eq()(key,
                         ListConfiguration::extractKey(cursorNode->value()))) {

            break;
        }
    }
    return  result;
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::const_iterator
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::find(
                                                     const key_type& key) const
{
    return const_iterator(d_impl.find(key));
}


template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
bool unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::empty() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return 0 == d_impl.size();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::size_type
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::size() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return d_impl.size();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::size_type
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::max_size() const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return AllocatorTraits::max_size(get_allocator());
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::hasher
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::hash_function() const
{
    return d_impl.hasher();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::key_equal
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::key_eq() const
{
    return d_impl.comparator();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
bsl::pair<typename unordered_multimap<KEY,
                                      VALUE,
                                      HASH,
                                      EQUAL,
                                      ALLOCATOR>::const_iterator,
          typename unordered_multimap<KEY,
                                      VALUE,
                                      HASH,
                                      EQUAL,
                                      ALLOCATOR>::const_iterator>
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::equal_range(
                                                     const key_type& key) const
{
    HashTableLink *first;
    HashTableLink *last;
    d_impl.findRange(&first, &last, key);
    return bsl::pair<const_iterator, const_iterator>(const_iterator(first),
                                                     const_iterator(last));
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
typename unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::size_type
unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>:: max_bucket_count()
                                                                          const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return d_impl.maxNumBuckets();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
float unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::load_factor()
                                                                          const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return d_impl.loadFactor();
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
float unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>::max_load_factor()
                                                                          const
                                                          BSLS_KEYWORD_NOEXCEPT
{
    return d_impl.maxLoadFactor();
}

}  // close namespace bsl

// FREE OPERATORS
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
bool bsl::operator==(
        const bsl::unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& lhs,
        const bsl::unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& rhs)
{
    return lhs.d_impl == rhs.d_impl;
}

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
bool bsl::operator!=(
        const bsl::unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& lhs,
        const bsl::unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& rhs)
{
    return !(lhs == rhs);
}

// FREE FUNCTIONS
template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
inline
void bsl::swap(bsl::unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& a,
               bsl::unordered_multimap<KEY, VALUE, HASH, EQUAL, ALLOCATOR>& b)
                                     BSLS_KEYWORD_NOEXCEPT_SPECIFICATION(false)
{
    a.swap(b);
}

// ============================================================================
//                                TYPE TRAITS
// ============================================================================

// Type traits for STL *unordered* *associative* containers:
//: o An unordered associative container defines STL iterators.
//: o An unordered associative container is bitwise movable if both functors
//:   and the allocator are bitwise movable.
//: o An unordered associative container uses 'bslma' allocators if the
//:   (template parameter) type 'ALLOCATOR' is convertible from
//:   'bslma::Allocator*'.

namespace BloombergLP {

namespace bslalg {

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
struct HasStlIterators<bsl::unordered_multimap<KEY,
                                               VALUE,
                                               HASH,
                                               EQUAL,
                                               ALLOCATOR> >
: bsl::true_type
{};

}  // close namespace bslalg

namespace bslma {

template <class KEY, class VALUE, class HASH, class EQUAL, class ALLOCATOR>
struct UsesBslmaAllocator<bsl::unordered_multimap<KEY,
                                                  VALUE,
                                                  HASH,
                                                  EQUAL,
                                                  ALLOCATOR> >
: bsl::is_convertible<Allocator*, ALLOCATOR>::type
{};

}  // close namespace bslma

namespace bslmf {

template <class KEY, class MAPPED, class HASH, class EQUAL, class ALLOCATOR>
struct IsBitwiseMoveable<
    bsl::unordered_multimap<KEY, MAPPED, HASH, EQUAL, ALLOCATOR> >
    : ::BloombergLP::bslmf::IsBitwiseMoveable<BloombergLP::bslstl::HashTable<
          ::BloombergLP::bslstl::
              UnorderedMapKeyConfiguration<KEY, bsl::pair<const KEY, MAPPED> >,
          HASH,
          EQUAL,
          ALLOCATOR> >::type
{};

}
}  // close enterprise namespace

#else // if ! defined(DEFINED_BSLSTL_UNORDEREDMULTIMAP_H)
# error Not valid except when included from bslstl_unorderedmultimap.h
#endif // ! defined(COMPILING_BSLSTL_UNORDEREDMULTIMAP_H)

#endif // ! defined(INCLUDED_BSLSTL_UNORDEREDMULTIMAP_CPP03)

// ----------------------------------------------------------------------------
// Copyright 2022 Bloomberg Finance L.P.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ----------------------------- END-OF-FILE ----------------------------------